Giải hệ phương trình:
\(\left\{{}\begin{matrix}x^3-3x^2-9x+22=y^3+3y^2-9y\\x^2+y^2-x+y=\dfrac{1}{2}\end{matrix}\right.\)
Cộng vế với vế:
\(x^2+2xy+y^2+x+y=12\)
\(\Leftrightarrow\left(x+y\right)^2+\left(x+y\right)-12=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+y=-4\\x+y=3\end{matrix}\right.\)
TH1: \(\left\{{}\begin{matrix}x+y=-4\\xy=5-\left(x+y\right)=9\end{matrix}\right.\)
Theo Viet đảo, x và y là nghiệm: \(t^2-4t+9=0\) (vô nghiệm)
TH2: \(\left\{{}\begin{matrix}x+y=3\\xy=5-\left(x+y\right)=2\end{matrix}\right.\)
Theo Viet đảo, x và y là nghiệm:
\(t^2-3t+2=0\Rightarrow\left[{}\begin{matrix}t=1\\t=2\end{matrix}\right.\)
\(\Rightarrow\left(x;y\right)=\left(1;2\right);\left(2;1\right)\)
Giải hệ pt: \(\left\{{}\begin{matrix}x^3-3x^2-9x+22=y^3+3y^2-9y\\x^2+y^2-x+y=\dfrac{1}{2}\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x^3-3x^2-9x+22=y^3+3y^2-9y\left(1\right)\\x^2+y^2-x+y=\dfrac{1}{2}\left(2\right)\end{matrix}\right.\)
PT (1)\(\Leftrightarrow\left(x-y\right)^3+3xy\left(x-y\right)-3\left(x^2+y^2\right)-9\left(x-y\right)=-22\)
\(\Leftrightarrow\left(x-y\right)^3+3xy\left(x-y\right)-3\left(x-y\right)^2-6xy-9\left(x-y\right)=-22\)
PT (2)\(\Leftrightarrow\left(x-y\right)^2-\left(x-y\right)+2xy=\dfrac{1}{2}\)
Đặt \(\left\{{}\begin{matrix}a=x-y\\b=xy\end{matrix}\right.\)
Hệ tt \(\left\{{}\begin{matrix}a^3+3ab-3a^2-6b-9a=-22\\a^2-a+2b=\dfrac{1}{2}\end{matrix}\right.\)
\(\left\{{}\begin{matrix}a^3+3ab-3a^2-6b-9a=-22\\b=\dfrac{1-2a^2+2a}{4}\end{matrix}\right.\)
\(\Rightarrow a^3+3a\left(\dfrac{1-2a^2+2a}{4}\right)-3a^2-6\left(\dfrac{1-2a^2+2a}{4}\right)-9a=-22\)
\(\Leftrightarrow-2a^3+6a^2-45a+82=0\)
\(\Leftrightarrow a=2\)\(\Rightarrow b=-\dfrac{3}{4}\)
\(\Rightarrow\left\{{}\begin{matrix}x-y=2\\xy=-\dfrac{3}{4}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}y=-\dfrac{1}{2}\\x=\dfrac{3}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}y=-\dfrac{3}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\end{matrix}\right.\)
Vậy...
giải hệ phương trình :
\(\left\{{}\begin{matrix}x^3-3x^2-9x+22=y^3+3y^2-9y\\x^2+y^2-x+y=\dfrac{1}{2}\end{matrix}\right.\)
pt1:
(x-1)^3-12x+12=(y+1)^3-12y-12
<=> (x-1)^3 -12(x-1)=(y+1)^3-12(y+1). đặt x-1=a ; y+1=b
a^3-12a=b^3-12b
=>(a-b) (a^2+ab+b^2-12)=0
với a^2+b^2+ab=12
(x-1)^2+(y+1)^2+(x-1)(y+1)=12
x^2+y^2+xy-x+y=11(1)
kết hợp pt2 x^2+y^2+y-x=1/2 thay vào (1)
xy=21/2 từ đây thế x theo y dễ dàng giải nghiệm
với a=b thì x-1=y+1
=>từ đây thế x theo y vào pt2 ta dễ dàng giải
Gỉai hệ phương trình đối xứng sau:
a.\(\left\{{}\begin{matrix}x^2+y^2-x-2y=19\\xy\left(x-1\right)\left(y-2\right)=20\end{matrix}\right.\)
b.\(\left\{{}\begin{matrix}\left(x^2+1\right)\left(y^2+1\right)+8xy=0\\\dfrac{x}{x^2+1}+\dfrac{y}{y^2+1}=-\dfrac{1}{4}\end{matrix}\right.\)
c.\(\left\{{}\begin{matrix}x^3-3x^2-9x+22=y^3+3y^2-9y\\x^2+y^2-x+y=\dfrac{1}{2}\end{matrix}\right.\)
a)
đặt \(x^2-x=u;y^2-2y=v\)
hpt trở thành
\(\left\{{}\begin{matrix}u+v=19\\uv=20\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}u=\dfrac{19-\sqrt{281}}{2}\\v=\dfrac{19+\sqrt{281}}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}u=\dfrac{19+\sqrt{281}}{2}\\v=\dfrac{19-\sqrt{281}}{2}\end{matrix}\right.\end{matrix}\right.\)
dễ thấy tại 2 trường hợp hpt đều vô nó nên hpt vô no
đc 1 câu
Giải các hệ phương trình sau:
a) \(\left\{{}\begin{matrix}2\left(x+1\right)-3y=-10\\3x+2y+5=0\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}\dfrac{x+1}{2}-\dfrac{y-2}{3}=1\\4x+3y=1\end{matrix}\right.\)
Bài 1: Giải hệ phương trình:
\(\left\{{}\begin{matrix}x^2+32y^2=9y^4+\frac{272}{9}\\x^2+y^2+xy+4=3x+4y\end{matrix}\right.\)
Bài 2: Giải hệ phương trình:
\(\left\{{}\begin{matrix}x^2-xy-3y^2+3x-y-1=0\\xy+y^2-x+3y=0\end{matrix}\right.\)
Bài 3: Giải hệ phương trình:
\(\left\{{}\begin{matrix}x^2+3xy-9y^2+23y-17=0\\x^2-2xy+3y^2-6y-3=0\end{matrix}\right.\)
Ai nhanh và đúng mình sẽ cho đúng và thêm bạn bè nhé. Thanks! Làm ơn giúp mình !!! PLEASE !!!
giải hệ phương trình
\(\left\{{}\begin{matrix}\sqrt{x-2}+\sqrt{y-3}=3\\2\sqrt{x-2}-3\sqrt{y-3}=-4\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\dfrac{3x}{x+1}+\dfrac{2}{y+4}=4\\\dfrac{2x}{x+1}-\dfrac{5}{y+4}=4\end{matrix}\right.\)
a.
ĐKXĐ: \(\left\{{}\begin{matrix}x\ge2\\y\ge3\end{matrix}\right.\)
\(\left\{{}\begin{matrix}3\sqrt{x-2}+3\sqrt{y-3}=9\\2\sqrt{x-2}-3\sqrt{y-3}=-4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3\sqrt{x-2}+3\sqrt{y-3}=9\\5\sqrt{x-2}=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3\sqrt{x-2}+3\sqrt{y-3}=9\\\sqrt{x-2}=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-2}=1\\\sqrt{y-3}=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=7\end{matrix}\right.\)
b.
ĐKXĐ: \(\left\{{}\begin{matrix}x\ne-1\\y\ne-4\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\dfrac{15x}{x+1}+\dfrac{10}{y+4}=20\\\dfrac{4x}{x+1}-\dfrac{10}{y+4}=8\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{15x}{x+1}+\dfrac{10}{y+4}=20\\\dfrac{19x}{x+1}=28\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{x+1}=\dfrac{28}{19}\\\dfrac{1}{y+4}=-\dfrac{4}{19}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}19x=28x+28\\4y+16=-19\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{28}{9}\\y=-\dfrac{35}{4}\end{matrix}\right.\)
Giải các hệ phương trình sau:a) \(\left\{{}\begin{matrix}\left(2x-y\right)^2-6x+3y=0\\x+2y=0\end{matrix}\right.\);b) \(\left\{{}\begin{matrix}\sqrt{\dfrac{2x-y}{x+y}}+\sqrt{\dfrac{x+y}{2x-y}}=2\\3x+y=14\end{matrix}\right.\)
a.
\(\Leftrightarrow\left\{{}\begin{matrix}\left(2x-y\right)^2-3\left(2x-y\right)=0\\x+2y=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(2x-y\right)\left(2x-y-3\right)=0\\x+2y=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}2x-y=0\\x+2y=0\end{matrix}\right.\\\left\{{}\begin{matrix}2x-y-3=0\\x+2y=0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\\\left\{{}\begin{matrix}x=\dfrac{6}{5}\\y=-\dfrac{3}{5}\end{matrix}\right.\end{matrix}\right.\)
b.
ĐKXĐ: \(\dfrac{2x-y}{x+y}>0\)
Đặt \(\sqrt{\dfrac{2x-y}{x+y}}=t>0\) pt đầu trở thành:
\(t+\dfrac{1}{t}=2\Leftrightarrow t^2-2t+1=0\)
\(\Leftrightarrow t=1\Leftrightarrow\sqrt{\dfrac{2x-y}{x+y}}=1\)
\(\Leftrightarrow2x-y=x+y\Leftrightarrow x=2y\)
Thay xuống pt dưới:
\(6y+y=14\Rightarrow y=2\)
\(\Rightarrow x=4\)
Giải hệ phương trình sau:
a. \(\left\{{}\begin{matrix}\dfrac{x+2}{y}=\dfrac{x+1}{y-2}\\\dfrac{5x+1}{5x-2}=\dfrac{y-2}{y+2}\end{matrix}\right.\)
b. \(\left\{{}\begin{matrix}2x+\left|y\right|=4\\4x-3y=1\end{matrix}\right.\)
a: =>xy-2x+2y-4=xy+y và 5xy+10x+y+2=5xy-10x-2y+4
=>-2x+y=4 và 20x+3y=2
=>x=-5/13; y=42/13
b: =>4x+2|y|=8 và 4x-3y=1
=>2|y|-3y=7 và 4x-3y=1
TH1: y>=0
=>2y-3y=7 và 4x-3y=1
=>-y=7 và 4x-3y=1
=>y=-7(loại)
TH2: y<0
=>-2y-3y=7 và 4x-3y=1
=>y=-7/5; 4x=1+3y=1-21/5=-16/5
=>x=-4/5; y=-7/5