Chương III - Hệ hai phương trình bậc nhất hai ẩn

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
The Silent Man

Gỉai hệ phương trình đối xứng sau:

a.\(\left\{{}\begin{matrix}x^2+y^2-x-2y=19\\xy\left(x-1\right)\left(y-2\right)=20\end{matrix}\right.\)

b.\(\left\{{}\begin{matrix}\left(x^2+1\right)\left(y^2+1\right)+8xy=0\\\dfrac{x}{x^2+1}+\dfrac{y}{y^2+1}=-\dfrac{1}{4}\end{matrix}\right.\)

c.\(\left\{{}\begin{matrix}x^3-3x^2-9x+22=y^3+3y^2-9y\\x^2+y^2-x+y=\dfrac{1}{2}\end{matrix}\right.\)

Hiếu Cao Huy
26 tháng 7 2017 lúc 15:11

a)

đặt \(x^2-x=u;y^2-2y=v\)

hpt trở thành

\(\left\{{}\begin{matrix}u+v=19\\uv=20\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}u=\dfrac{19-\sqrt{281}}{2}\\v=\dfrac{19+\sqrt{281}}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}u=\dfrac{19+\sqrt{281}}{2}\\v=\dfrac{19-\sqrt{281}}{2}\end{matrix}\right.\end{matrix}\right.\)

dễ thấy tại 2 trường hợp hpt đều vô nó nên hpt vô no

đc 1 câu

The Silent Man
24 tháng 7 2017 lúc 23:38

Hiếu Cao Huy