Tính: \(\sin x.\cos x+\dfrac{\sin^2x}{1+\cot x}+\dfrac{\cos^2x}{1+\tan x}\)
Chứng minh:
1.\(\dfrac{\cot^2x-\sin^2x}{\cot^2x-\tan^2x}=\sin^2x\cdot\cos^2x\)
2.\(\dfrac{1-\sin x}{\cos x}-\dfrac{\cos x}{1+\sin x}=0\)
3.\(\dfrac{\tan x}{\sin x}-\dfrac{\sin x}{\cot x}=\cos x\)
4.\(\dfrac{\tan x}{1-\tan^2x}\cdot\dfrac{\cot^2x-1}{\cot x}=1\)
5.\(\dfrac{1+\sin^2x}{1-\sin^2x}=1+2\tan^2x\)
Câu 1 đề sai, chắc chắn 1 trong 2 cái \(cot^2x\) phải có 1 cái là \(cos^2x\)
2.
\(\dfrac{1-sinx}{cosx}-\dfrac{cosx}{1+sinx}=\dfrac{\left(1-sinx\right)\left(1+sinx\right)-cos^2x}{cosx\left(1+sinx\right)}=\dfrac{1-sin^2x-cos^2x}{cosx\left(1+sinx\right)}\)
\(=\dfrac{1-\left(sin^2x+cos^2x\right)}{cosx\left(1+sinx\right)}=\dfrac{1-1}{cosx\left(1+sinx\right)}=0\)
3.
\(\dfrac{tanx}{sinx}-\dfrac{sinx}{cotx}=\dfrac{tanx.cotx-sin^2x}{sinx.cotx}=\dfrac{1-sin^2x}{sinx.\dfrac{cosx}{sinx}}=\dfrac{cos^2x}{cosx}=cosx\)
4.
\(\dfrac{tanx}{1-tan^2x}.\dfrac{cot^2x-1}{cotx}=\dfrac{tanx}{1-tan^2x}.\dfrac{\dfrac{1}{tan^2x}-1}{\dfrac{1}{tanx}}=\dfrac{tanx}{1-tan^2x}.\dfrac{1-tan^2x}{tanx}=1\)
5.
\(\dfrac{1+sin^2x}{1-sin^2x}=\dfrac{1+sin^2x}{cos^2x}=\dfrac{1}{cos^2x}+tan^2x=\dfrac{sin^2x+cos^2x}{cos^2x}+tan^2x\)
\(=tan^2x+1+tan^2x=1+2tan^2x\)
Cho 0o < x < 90o, CM các đẳng thức
1/ \(\dfrac{1}{\tan x+1}+\dfrac{1}{\cot x+1}=1\)
2/ \(\dfrac{\cos x}{\sin x-\cos x}+\dfrac{\sin x}{\sin x+\cos x}=\dfrac{1+\cot^2x}{1-\cot^2x}\)
3/ \(\left(\sqrt{\dfrac{1+\sin x}{1-\sin x}}-\sqrt{\dfrac{1-\sin x}{1+\sin x}}\right)^2=4\tan^2x\)
4/ \(\left(\sqrt{\dfrac{1+\cos x}{1-\cos x}}-\sqrt{\dfrac{1-\cos x}{1+\cos x}}\right)^2=4\cot^2x\)
1: \(=\dfrac{cotx+1+tanx+1}{\left(tanx+1\right)\left(cotx+1\right)}\)
\(=\dfrac{\dfrac{1}{cotx}+cotx+2}{2+tanx+cotx}\)
\(=1\)
2: \(VT=\dfrac{cos^2x+cosxsinx+sin^2x-sinx\cdot cosx}{sin^2x-cos^2x}\)
\(=\dfrac{1}{sin^2x-cos^2x}\)
\(VP=\dfrac{1+cot^2x}{1-cot^2x}=\left(1+\dfrac{cos^2x}{sin^2x}\right):\left(1-\dfrac{cos^2x}{sin^2x}\right)\)
\(=\dfrac{1}{sin^2x}:\dfrac{sin^2x-cos^2x}{sin^2x}=\dfrac{1}{sin^2x-cos^2x}\)
=>VT=VP
Rút gọn các biểu thức sau
1, \(\dfrac{1+\cot x}{1-\cot x}-\dfrac{2+2\cot^2x}{\left(\tan x-1\right)\left(\tan^2x+1\right)}\)
2, \(\sqrt{\sin^4x+6\cos^2x+3\cos^4x}+\sqrt{\cos^4x+6\sin^2x+3\sin^4x}\)
Bạn kiểm tra lại đề bài câu 1, câu này chỉ có thể rút gọn đến \(2cot^2x+2cotx+1\) nên biểu thức ko hợp lý
Đồng thời kiểm tra luôn đề câu 2, trong cả 2 căn thức đều xuất hiện \(6sin^2x\) rất không hợp lý, chắc chắn phải có 1 cái là \(6cos^2x\)
Câu 1 đề vẫn có vấn đề:
\(=\dfrac{1+cotx}{1-cotx}-\dfrac{2\left(1+cot^2x\right)cot^2x}{\left(tanx-1\right)\left(tan^2x+1\right)cot^2x}=\dfrac{1+cotx}{1-cotx}-\dfrac{2cot^2x}{tanx-1}\)
\(=\dfrac{1+cotx}{1-cotx}-\dfrac{2cot^3x}{1-cotx}=\dfrac{1+cotx-2cot^3x}{1-cotx}\)
\(=\dfrac{\left(1-cotx\right)\left(1+2cotx+2cot^2x\right)}{1-cotx}=1+2cotx+2cot^2x\)
Có thể coi như ko thể rút gọn tiếp
2.
\(\sqrt{\left(1-cos^2x\right)^2+6cos^2x+3cos^4x}+\sqrt{\left(1-sin^2x\right)^2+6sin^2x+3sin^4x}\)
\(=\sqrt{4cos^4x+4cos^2x+1}+\sqrt{4sin^4x+4sin^2x+1}\)
\(=\sqrt{\left(2cos^2x+1\right)^2}+\sqrt{\left(2sin^2x+1\right)^2}\)
\(=2\left(cos^2x+sin^2x\right)+2=4\)
Cho 0o < x < 90o, CM các biểu thức sau không phụ thuộc vào biến:
\(1.A=2\left(\sin^4x+\cos^4x+\sin^2x\cos^2x\right)^2-\left(\sin^8x+\cos^8x\right)\)
\(2.B=\left(\dfrac{1-\tan^2x}{\tan x}\right)^2-\left(1+\tan^2x\right)\left(1+\cot^2x\right)\)
\(3.C=\left(\sin^4x+\cos^4x-1\right)\left(\tan^2x+\cot^2x+2\right)\)
\(4.D=\dfrac{\tan^2x-\cos^2x}{\sin^2x}+\dfrac{\cot^2x-\sin^2x}{\cos^2x}\)
\(5.E=\dfrac{\cot^2x-\cos^2x}{\cot^2x}+\dfrac{\sin x\cdot\cos x}{\cot x}\)
câu 1 : ta có : \(A=\left(sin^4x+cos^4x+sin^2x.cos^2x\right)^2-\left(sin^8x+cos^8x\right)\)
\(=\left(1-sin^2x.cos^2x\right)^2-\left(1-3sin^2x.cos^2x\right)\)
\(=\left(1-sin^2x.cos^2x\right)^2-\left(1-sin^2x.cos^2x\right)+2sin^2xcos^2x\)
\(=-sin^2x.cos^2x\left(1-sin^2x.cos^2x\right)+2sin^2x.cos^2x\)
\(=sin^2x.cos^2x\left(1+sin^2x.cos^2x\right)\)
tới đây mk xin sử dụng kiến thức lớp 10 một chút
\(=\dfrac{sin^22x}{4}\left(1+\dfrac{sin^22x}{4}\right)=\dfrac{sin^22x}{4}+\dfrac{sin^42x}{16}\)
vẩn phụ thuộc vào x \(\Rightarrow\) đề sai .
câu 1 : câu này bn có thể tìm trong trang của mk , mk nhớ đã làm nó rồi nhưng tìm hoài không đc . nếu đc bn có thể chờ mk đi hok về mk sẽ kiếm cho bn hoắc có thể là lm lại cho bn nha :)
câu 2 : https://hoc24.vn/hoi-dap/question/657072.html
câu 3 : https://hoc24.vn/hoi-dap/question/657069.html
câu 4 : https://hoc24.vn/hoi-dap/question/656635.html
câu 5 : https://hoc24.vn/hoi-dap/question/657071.html
chứng minh rằng
a) tanx(cot\(^2\)x - 1) = cotx(1 - tan\(^2\)x)
b) tan\(^2\)x - sin\(^2\)x = tan\(^2\)x.sin\(^2\)x
c) \(\dfrac{cos^2x-sin^2x}{cot^2x-tan^2x}\) - cos\(^2\)x = - cos\(^4\)x
a: tan x(cot^2x-1)
\(=\dfrac{1}{cotx}\left(cot^2x-cotx\cdot tanx\right)\)
=cotx-tanx/cotx=cotx(1-tan^2x)
b: \(tan^2x-sin^2x=\dfrac{sin^2x}{cos^2x}-sin^2x\)
\(=sin^2x\left(\dfrac{1}{cos^2x}-1\right)=sin^2x\cdot\dfrac{sin^2x}{cos^2x}=sin^2x\cdot tan^2x\)
c: \(\dfrac{cos^2x-sin^2x}{cot^2x-tan^2x}=\dfrac{cos^2x-sin^2x}{\dfrac{cos^2x}{sin^2x}-\dfrac{sin^2x}{cos^2x}}\)
\(=\left(cos^2x-sin^2x\right):\dfrac{cos^4x-sin^4x}{sin^2x\cdot cos^2x}\)
\(=\dfrac{sin^2x\cdot cos^2x}{1}=sin^2x\cdot cos^2x\)
=>sin^2x*cos^2x-cos^2x=cos^2x(sin^2x-1)
=-cos^2x*cos^2x=-cos^4x
=>ĐPCM
Chứng minh các đẳng thức sau:
a) \(\dfrac{1}{1+\tan\alpha}+\dfrac{1}{1+\cot\alpha}=1\) b) \(\sin^4x-\cos^4x=2\sin^2x-1\)
c) \(\dfrac{1}{\sin^2x}+\dfrac{1}{\cos^2x}=\tan^2x+\cot^2x+2\)
d) \(\sin x.\cos x.\left(1+\tan x\right)\left(1+\cot x\right)=1+2\sin x\)
a) \(\dfrac{1}{1+tan\alpha}+\dfrac{1}{1+cot\alpha}\)
\(=\dfrac{1}{1+\dfrac{1}{cot\alpha}}+\dfrac{1}{1+cot\alpha}\)
\(=\dfrac{1}{\dfrac{cot\alpha+1}{cot\alpha}}+\dfrac{1}{1+cot\alpha}\)
\(=\dfrac{cot\alpha}{cot\alpha+1}+\dfrac{1}{1+cot\alpha}\)
\(=\dfrac{cot\alpha+1}{cot\alpha+1}=1\) (đpcm)
b) \(tan^2x+cot^2x+2\)
\(=\dfrac{sin^2x}{cos^2x}+\dfrac{cos^2x}{sin^2x}+2\)
\(=\dfrac{sin^2x}{cos^2x}+1+\dfrac{cos^2x}{sin^2x}+1\)
\(=\dfrac{sin^2x+cos^2x}{cos^2x}+\dfrac{cos^2x+sin^2x}{sin^2x}\)
\(=\dfrac{1}{cos^2x}+\dfrac{1}{sin^2x}\) (đpcm)
c) \(sinx.cosx.\left(1+tanx\right)\left(1+cotx\right)\)
\(=\left(sinx.cosx+sinx.cosx.tanx\right)\left(1+cotx\right)\)
\(=\left(sinx.cosx+sinx.cosx.\dfrac{sinx}{cosx}\right)\left(1+cotx\right)\)
\(=\left(sinx.cosx+sin^2x\right)\left(1+cotx\right)\)
\(=\left(sinx.cosx+sin^2x\right)\left(1+\dfrac{cosx}{sinx}\right)\)
\(=sinx.cosx+cos^2x+sin^2x+sinx.cosx\)
\(=1+sin^2x.cos^2x\)
Câu cuối không biết chỗ sai, mong mọi người chỉ bảo ạ ^^
Bài 1: chứng minh rằng
a, \(\dfrac{\sin x+\cos x-1}{1-\cos x}\)=\(\dfrac{2\cos x}{\sin x-\cos x+1}\)
b, \(\cot^2x-\cos^2x=\cot^2x\cos^2x\)
a.
Thực hiện phép biến đổi tương đương:
\(\dfrac{sinx+cosx-1}{1-cosx}=\dfrac{2cosx}{sinx-cosx+1}\)
\(\Leftrightarrow\left(sinx+cosx-1\right)\left(sinx-cosx+1\right)=2cosx\left(1-cosx\right)\)
\(\Leftrightarrow sin^2x-\left(cosx-1\right)^2=2cosx-2cos^2x\)
\(\Leftrightarrow sin^2x-cos^2x+2cosx-1=2cosx-2cos^2x\)
\(\Leftrightarrow1-cos^2x-cos^2x-1=-2cos^2x\)
\(\Leftrightarrow-2cos^2x=-2cos^2x\) (luôn đúng)
Vậy đẳng thức đã cho được chứng minh
b.
\(cot^2x-cos^2x=\dfrac{cos^2x}{sin^2x}-cos^2x=cos^2x\left(\dfrac{1}{sin^2x}-1\right)=\dfrac{cos^2x\left(1-sin^2x\right)}{sin^2x}=cot^2x.cos^2x\)
BÀI 1 :cho tam giác ABC vuông tại A có AB=4cm BC=6cm. tính tỉ số lượng giác của các góc B và C
BÀI 2 :đơn giản các biểu thức
a)\(A=\cos^2x+\cos^2x.\cot g^2x\)
b)\(sin^2x+\sin^2x.\tan^2x\)
c)\(\dfrac{2cos^2x-1}{\sin x+\cos x}\)
d)\(\dfrac{\cos x}{1+\sin x}+\tan x\)
Tìm đạo hàm các hàm số:
1, \(y=\tan(3x-\dfrac{\pi}{4})+\cot(2x-\dfrac{\pi}{3})+\cos(x+\dfrac{\pi}{6})\)
2, \(y=\dfrac{\sqrt{\sin x+2}}{2x+1}\)
3, \(y=\cos(3x+\dfrac{\pi}{3})-\sin(2x+\dfrac{\pi}{6})+\cot(x+\dfrac{\pi}{4})\)
a.
\(y'=\dfrac{3}{cos^2\left(3x-\dfrac{\pi}{4}\right)}-\dfrac{2}{sin^2\left(2x-\dfrac{\pi}{3}\right)}-sin\left(x+\dfrac{\pi}{6}\right)\)
b.
\(y'=\dfrac{\dfrac{\left(2x+1\right)cosx}{2\sqrt{sinx+2}}-2\sqrt{sinx+2}}{\left(2x+1\right)^2}=\dfrac{\left(2x+1\right)cosx-4\left(sinx+2\right)}{\left(2x+1\right)^2}\)
c.
\(y'=-3sin\left(3x+\dfrac{\pi}{3}\right)-2cos\left(2x+\dfrac{\pi}{6}\right)-\dfrac{1}{sin^2\left(x+\dfrac{\pi}{4}\right)}\)