Cho 0o < x < 90o, CM các đẳng thức
1/ \(\dfrac{1}{\tan x+1}+\dfrac{1}{\cot x+1}=1\)
2/ \(\dfrac{\cos x}{\sin x-\cos x}+\dfrac{\sin x}{\sin x+\cos x}=\dfrac{1+\cot^2x}{1-\cot^2x}\)
3/ \(\left(\sqrt{\dfrac{1+\sin x}{1-\sin x}}-\sqrt{\dfrac{1-\sin x}{1+\sin x}}\right)^2=4\tan^2x\)
4/ \(\left(\sqrt{\dfrac{1+\cos x}{1-\cos x}}-\sqrt{\dfrac{1-\cos x}{1+\cos x}}\right)^2=4\cot^2x\)
1: \(=\dfrac{cotx+1+tanx+1}{\left(tanx+1\right)\left(cotx+1\right)}\)
\(=\dfrac{\dfrac{1}{cotx}+cotx+2}{2+tanx+cotx}\)
\(=1\)
2: \(VT=\dfrac{cos^2x+cosxsinx+sin^2x-sinx\cdot cosx}{sin^2x-cos^2x}\)
\(=\dfrac{1}{sin^2x-cos^2x}\)
\(VP=\dfrac{1+cot^2x}{1-cot^2x}=\left(1+\dfrac{cos^2x}{sin^2x}\right):\left(1-\dfrac{cos^2x}{sin^2x}\right)\)
\(=\dfrac{1}{sin^2x}:\dfrac{sin^2x-cos^2x}{sin^2x}=\dfrac{1}{sin^2x-cos^2x}\)
=>VT=VP