Cho 00 < x < 900. Chứng minh các đẳng thức sau:
1. sin6 x +cos6 x = 1 - 3sin2 x cos2 x.
2. sin4 x - cos4 x = 1 - 2cos2 x.
3. tan2 x - sin2 x = tan2 x.sin2x.
4. cot2 x - cos2 x = cot2 x.cos2 x.
5.\(\left(\sqrt{\dfrac{1+sinx}{1-sinx}}-\sqrt{\dfrac{1-sinx}{1+sinx}}\right)^2\) = 4 tan2 x.
6.\(\left(\sqrt{\dfrac{1+cosx}{1-cosx}}-\sqrt{\dfrac{1-cosx}{1+cosx}}\right)^2\) = 4 cot2 x.
1: \(sin^6x+cos^6x+3sin^2x\cdot cos^2x\)
\(=\left(sin^2x+cos^2x\right)^2-3\cdot sin^2x\cdot cos^2x\cdot\left(sin^2x+cos^2x\right)+3\cdot sin^2x\cdot cos^2x\)
=1
2: \(sin^4x-cos^4x\)
\(=\left(sin^2x+cos^2x\right)\left(sin^2x-cos^2x\right)\)
\(=1-2\cdot cos^2x\)