Tìm x:
++=1
Tìm x:
\(\sqrt{4x-4}\)+\(\sqrt{25x-25}\)+\(\sqrt{81x-81}\)=\(-\)1
Giải chi tiết nha!
ĐK: \(x\ge1\)
Ta có:
\(\sqrt{4x-4}+\sqrt{25x-25}+\sqrt{81x-81}=1\)
\(\Rightarrow\sqrt{4\left(x-1\right)}+\sqrt{25\left(x-1\right)}+\sqrt{81\left(x-1\right)}=1\)
\(\Rightarrow2\sqrt{x-1}+5\sqrt{x-1}+9\sqrt{x-1}=1\)
\(\Rightarrow16\sqrt{x-1}=1\)
\(\Rightarrow\sqrt{x-1}=\dfrac{1}{16}\)
\(\Rightarrow\left[{}\begin{matrix}x-1=\dfrac{1}{4}\\x-1=-\dfrac{1}{4}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{5}{4}\\x=\dfrac{3}{4}\end{matrix}\right.\)
a \(\sqrt{4x-20}+\sqrt{x-5}-\dfrac{1}{3}\sqrt{9x-45}=4\)
b \(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}=4\)
c \(\dfrac{1}{3}\sqrt{x-2}-\dfrac{2}{3}\sqrt{9x-18}+6\sqrt{\dfrac{x-2}{81}=-4}\)
d \(\sqrt{9x+27}+4\sqrt{x+3}-\dfrac{3}{4}\sqrt{16x+48}=0\)
a: ĐKXĐ: x-5>=0
=>x>=5
\(\sqrt{4x-20}+\sqrt{x-5}-\dfrac{1}{3}\cdot\sqrt{9x-45}=4\)
=>\(2\sqrt{x-5}+\sqrt{x-5}-\dfrac{1}{3}\cdot3\sqrt{x-5}=4\)
=>\(2\sqrt{x-5}=4\)
=>x-5=4
=>x=9(nhận)
b: ĐKXĐ: x-1>=0
=>x>=1
\(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}=4\)
=>\(\sqrt{x-1}+2\sqrt{x-1}-5\sqrt{x-1}=4\)
=>\(-2\sqrt{x-1}=4\)
=>\(\sqrt{x-1}=-2\)(vô lý)
Vậy: Phương trình vô nghiệm
c: ĐKXĐ: x-2>=0
=>x>=2
\(\dfrac{1}{3}\sqrt{x-2}-\dfrac{2}{3}\cdot\sqrt{9x-18}+6\cdot\sqrt{\dfrac{x-2}{81}}=-4\)
=>\(\dfrac{1}{3}\sqrt{x-2}-\dfrac{2}{3}\cdot3\sqrt{x-2}+6\cdot\dfrac{\sqrt{x-2}}{9}=-4\)
=>\(\sqrt{x-2}\left(\dfrac{1}{3}-2+\dfrac{2}{3}\right)=-4\)
=>\(-\sqrt{x-2}=-4\)
=>x-2=16
=>x=18(nhận)
d: ĐKXĐ: x+3>=0
=>x>=-3
\(\sqrt{9x+27}+4\sqrt{x+3}-\dfrac{3}{4}\cdot\sqrt{16x+48}=0\)
=>\(3\sqrt{x+3}+4\sqrt{x+3}-\dfrac{3}{4}\cdot4\sqrt{x+3}=0\)
=>\(4\sqrt{x+3}=0\)
=>x+3=0
=>x=-3(nhận)
a) \(\sqrt{4x-20}+\sqrt{x-5}-\dfrac{1}{3}\sqrt{9x-45}=4\)
= \(2\sqrt{x-5}+\sqrt{x-5}-\dfrac{1}{3}\sqrt{9\left(x-5\right)}=4\)
= \(2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)
= \(2\sqrt{x-5}=4\)
= \(\sqrt{x-5}=2\)
= \(\left|x-5\right|=4\)
=> \(x-5=\pm4\)
\(x=\pm4+5\)
\(x=9;x=1\)
Vậy x=9; x=1
b) \(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}=4\)
\(\sqrt{x-1}+2\sqrt{x-1}-5\sqrt{x-1}=4\)
\(-2\sqrt{x-1}=4\)
\(\sqrt{x-1}=-2\)
=>\(\left|x-1\right|=-2\)
\(x-1=\mp2\)
\(x=-3;x=1\)
Vậy x=-3; x=1
\(\sqrt{x-1}\) + \(\sqrt{4x+4}\) - \(\sqrt{25x+25}\) = -8
mình nghĩ căn đầu tiên phải là `x+1` mới đúng kiểu đề á, còn không phải thì bạn cmt nói mình nha=))
ĐK: \(x\ge-1\)
PT trở thành:
\(\sqrt{x+1}+\sqrt{4}.\sqrt{x+1}-\sqrt{25}.\sqrt{x+1}=-8\\ \Leftrightarrow\sqrt{x+1}+2\sqrt{x+1}-5\sqrt{x+1}=-8\\ \Leftrightarrow\left(1+2-5\right)\sqrt{x+1}=-8\\ \Leftrightarrow-2\sqrt{x+1}=-8\\ \Leftrightarrow\sqrt{x+1}=-\dfrac{8}{-2}=4\\ \Leftrightarrow x+1=4^2=16\\ \Leftrightarrow x=16-1=15\left(tm\right)\)
\(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}+2=0\)
\(x+\sqrt{5-4x}=0\)
\(\sqrt{1-2x^2}=x-1\)
a: ta có: \(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}+2=0\)
\(\Leftrightarrow\sqrt{x-1}+2\sqrt{x-1}-5\sqrt{x-1}+2=0\)
\(\Leftrightarrow\sqrt{x-1}=1\)
hay x=2
c: Ta có: \(\sqrt{1-2x^2}=x-1\)
\(\Leftrightarrow1-2x^2=x^2-2x+1\)
\(\Leftrightarrow-3x^2+2x=0\)
\(\Leftrightarrow-x\left(3x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(loại\right)\\x=\dfrac{2}{3}\left(loại\right)\end{matrix}\right.\)
Bài 1. Tìm điệu kiện của x để biểu thức A= căn 5+4x +căn 7-3x có nghĩa
Bài 2 Tìm x thỏa mãn:
a) căn 4x-4 +căn 9x-9- căn 25x-25 =7
b)căn 2x^2-3 =4 rất mong mọi người giúp đỡ ạ
\(2,\\ a,\sqrt{4x-4}+\sqrt{9x-9}-\sqrt{25x-25}=7\left(x\ge1\right)\\ \Leftrightarrow2\sqrt{x-1}+3\sqrt{x-1}-5\sqrt{x-1}=7\\ \Leftrightarrow0\sqrt{x-1}=7\Leftrightarrow x\in\varnothing\\ b,\sqrt{2x^2-3}=4\left(x\le-\dfrac{\sqrt{6}}{2};\dfrac{\sqrt{6}}{2}\le x\right)\\ \Leftrightarrow2x^2-3=16\\ \Leftrightarrow x^2=\dfrac{19}{2}\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{\dfrac{19}{2}}\left(tm\right)\\x=-\sqrt{\dfrac{19}{2}}\left(tm\right)\end{matrix}\right.\)
\(1,\\ A=\sqrt{5+4x}+\sqrt{7-3x}\\ ĐKXĐ:\left\{{}\begin{matrix}5+4x\ge0\\7-3x\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge-\dfrac{5}{4}\\x\le\dfrac{7}{3}\end{matrix}\right.\)
Bài 2:
a) \(\sqrt{4x-4}+\sqrt{9x-9}-\sqrt{25x-25}=7\left(đk:x\ge1\right)\)
\(\Leftrightarrow2\sqrt{x-1}+3\sqrt{x-2}-5\sqrt{x-1}=7\)
\(\Leftrightarrow0=7\left(VLý\right)\)
Vậy \(S=\varnothing\)
b) \(\sqrt{2x^2-3}=4\left(đk:-\sqrt{\dfrac{3}{2}}\ge x\ge\sqrt{\dfrac{3}{2}}\right)\)
\(\Leftrightarrow2x^2-3=16\)
\(\Leftrightarrow2x^2=19\Leftrightarrow x^2=\dfrac{19}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{\dfrac{19}{2}}\left(tm\right)\\x=-\sqrt{\dfrac{19}{2}}\left(tm\right)\end{matrix}\right.\)
Giải pt
6) \(\sqrt{x^2-4x+1}=x\)
8) \(\sqrt{x^2-x-6}=\sqrt{x-3}\)
9) \(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}+2=0\)
6) \(\sqrt{x^2-4x+1}=x\left(x\ge0\right)\)
\(\Leftrightarrow x^2-4x+1=x^2\)
\(\Leftrightarrow x^2-x^2=4x-1\)
\(\Leftrightarrow4x=1\)
\(\Leftrightarrow x=\dfrac{1}{4}\left(tm\right)\)
8) \(\sqrt{x^2-x-6}=\sqrt{x-3}\left(x\ge3\right)\)
\(\Leftrightarrow x^2-x-6=x-3\)
\(\Leftrightarrow x^2-2x-3=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\left(tm\right)\\x=-1\left(ktm\right)\end{matrix}\right.\)
9) \(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}+2=0\left(x\ge1\right)\)
\(\Leftrightarrow\sqrt{x-1}+2\sqrt{x-1}-5\sqrt{x-1}+2=0\)
\(\Leftrightarrow-2\sqrt{x-1}+2=0\)
\(\Leftrightarrow-2\sqrt{x-1}=-2\)
\(\Leftrightarrow\sqrt{x-1}=1\)
\(\Leftrightarrow x-1=1\)
\(\Leftrightarrow x=1+1\)
\(\Leftrightarrow x=2\left(tm\right)\)
Giải Phương Trình
√4x - 4 + √25x - 25 - √x-1 = 10
Tìm x biết
\(\sqrt{64x+64}-\sqrt{25x+25}+\sqrt{4x+4}=20\)
<=> \(\sqrt{64\left(x+1\right)}-\sqrt{25\left(x+1\right)}+\sqrt{4\left(x+1\right)}=20\)
<=> \(8\sqrt{\left(x+1\right)}-5\sqrt{\left(x+1\right)}+2\sqrt{\left(x+1\right)}=20\)
<=> . \(5\sqrt{\left(x+1\right)}=20\)
<=> \(\sqrt{\left(x+1\right)}=4\)
=> x+1=16
=> x=15
giải phương trình
a) \(\sqrt{x-5}\)+\(\sqrt{4x-20}\)-\(\dfrac{1}{5}\)\(\sqrt{9x-45}\)=3
b) \(\sqrt{x-1}\)+\(\sqrt{4x-4}\)-\(\sqrt{25x-25}\)+2=0
\(a,đk:x\ge5\\ \Leftrightarrow\sqrt{x-5}+\sqrt{4\left(x-5\right)}-\dfrac{1}{5}\sqrt{9\left(x-5\right)}=3\\ \Leftrightarrow\sqrt{x-5}+2\sqrt{x-5}-\dfrac{1}{5}.3\sqrt{x-5}=3\\ \Leftrightarrow\dfrac{12}{5}\sqrt{x-5}=3\\ \Rightarrow\sqrt{x-5}=\dfrac{5}{4}\\ \Leftrightarrow\left(\sqrt{x-5}\right)^2=\left(\dfrac{5}{4}\right)^2\\ \Leftrightarrow x-5=\dfrac{25}{16}\\ \Rightarrow x=\dfrac{25}{16}+5\\ \Rightarrow x=\dfrac{105}{16}\left(t|m\right)\)
\(b,đk:x\ge1\\ \Leftrightarrow\sqrt{x-1}+\sqrt{4\left(x-1\right)}-\sqrt{25\left(x-1\right)}=-2\\ \Leftrightarrow\sqrt{x-1}+2\sqrt{x-1}-5\sqrt{x-1}=-2\\ \Leftrightarrow-2\sqrt{x-1}=-2\\ \Leftrightarrow\sqrt{x-1}=1\\ \Leftrightarrow x-1=1\\ \Leftrightarrow x=2\left(t|m\right)\)
\(\sqrt{25x+25}-\sqrt{16x+16}+\sqrt{9x+9}-\sqrt{4x+4}+\sqrt{x+1}=27\)
ĐKXĐ: \(x\ge-1\)
\(\sqrt{25\left(x+1\right)}-\sqrt{16\left(x+1\right)}+\sqrt{9\left(x+1\right)}-\sqrt{4\left(x+1\right)}+\sqrt{x+1}=27\)
\(\Leftrightarrow5\sqrt{x+1}-4\sqrt{x+1}+3\sqrt{x+1}-2\sqrt{x+1}+\sqrt{x+1}=27\)
\(\Leftrightarrow3\sqrt{x+1}=27\)
\(\Leftrightarrow\sqrt{x+1}=9\)
\(\Rightarrow x+1=81\)
\(\Rightarrow x=80\) (thỏa mãn)