Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
títtt
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 10 2023 lúc 8:03

loading...  loading...  

Dương Nguyễn
Xem chi tiết
Khôi Bùi
16 tháng 7 2021 lúc 21:21

\(\sqrt{3}cosx+2sin^2\left(\dfrac{x}{2}-\pi\right)=1\) 

\(\Leftrightarrow\sqrt{3}cosx+2sin^2\dfrac{x}{2}=1\)

\(\Leftrightarrow\sqrt{3}cosx-cosx=0\Leftrightarrow cosx=0\Leftrightarrow x=\dfrac{\pi}{2}+k\pi\) ( k thuộc Z )

Vậy ... 

Nguyễn Việt Lâm
16 tháng 7 2021 lúc 21:28

22.

Nhận thấy \(cosx=0\) không phải nghiệm, chia 2 vế cho \(cos^2x\)

\(3tan^2x+2tanx-1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}tanx=-1\\tanx=\dfrac{1}{3}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{4}+k\pi\\x=arctan\left(\dfrac{1}{3}\right)+k\pi\end{matrix}\right.\)

Nghiệm dương nhỏ nhất của pt là: \(x=arctan\left(\dfrac{1}{3}\right)\)

Ngô Thành Chung
16 tháng 7 2021 lúc 21:33

22. PT đã cho tương đương

3 - 4cos2x + 2 sinxcosx = 0

⇔ 3 - 2 - 2cos2x + sin2x = 0

⇔ 1 - 2cos2x + sin2x = 0

⇔ 1 + sin2x = 2cos2x

⇔ sin\(\dfrac{\pi}{2}\) + sin2x = 2cos2x

⇔ \(2sin\left(\dfrac{\pi}{4}+x\right).cos\left(\dfrac{\pi}{4}-x\right)\) = 2cos2x

Do \(\left(\dfrac{\pi}{4}-x\right)+\left(\dfrac{\pi}{4}+x\right)=\dfrac{\pi}{2}\) 

⇒ \(sin\left(\dfrac{\pi}{4}+x\right)=cos\left(\dfrac{\pi}{4}-x\right)\)

Vậy sin2\(\left(x+\dfrac{\pi}{4}\right)\) = cos2x

Cái này là hiển nhiên ????

 

 

 

 

nguyễn hoàng lê thi
Xem chi tiết
Nguyễn Việt Lâm
31 tháng 7 2020 lúc 21:04

21.

\(\Leftrightarrow\left[{}\begin{matrix}sinx+1=0\\sinx-\sqrt{2}=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}sinx=-1\\sinx=\sqrt{2}>1\left(vn\right)\end{matrix}\right.\)

\(\Rightarrow x=-\frac{\pi}{2}+k2\pi\)

\(x\in\left[-2017;2017\right]\Rightarrow-2017\le-\frac{\pi}{2}+k2\pi\le2017\)

\(\Rightarrow\frac{\frac{\pi}{2}-2017}{2\pi}\le k\le\frac{\frac{\pi}{2}+2017}{2\pi}\)

\(\Rightarrow-320\le k\le321\) \(\Rightarrow\) pt có 642 nghiệm

22.

\(sin\left(3x-\frac{\pi}{4}\right)=\frac{\sqrt{3}}{2}\)

\(\Rightarrow\left[{}\begin{matrix}3x-\frac{\pi}{4}=\frac{\pi}{3}+k2\pi\\3x-\frac{\pi}{4}=\frac{2\pi}{3}+k2\pi\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\frac{7\pi}{36}+\frac{k2\pi}{3}\\x=\frac{11\pi}{36}+\frac{k2\pi}{3}\end{matrix}\right.\)

\(\Rightarrow\) Nghiệm âm lớn nhất \(x=-\frac{13\pi}{36}\) ; nghiệm dương nhỏ nhất \(x=\frac{7\pi}{36}\)

Tổng 2 nghiệm: \(-\frac{13\pi}{36}+\frac{7\pi}{36}=-\frac{\pi}{6}\)

Đao phương
Xem chi tiết
Nguyễn Việt Lâm
28 tháng 9 2019 lúc 21:29

\(sin\left(3x-\frac{\pi}{4}\right)=\frac{\sqrt{3}}{2}=sin\frac{\pi}{3}\Rightarrow\left[{}\begin{matrix}3x-\frac{\pi}{4}=\frac{\pi}{3}+k2\pi\\3x-\frac{\pi}{4}=\frac{2\pi}{3}+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{7\pi}{36}+\frac{k2\pi}{3}\\x=\frac{11\pi}{36}+\frac{k2\pi}{3}\end{matrix}\right.\)

\(\Rightarrow\) nghiệm dương nhỏ nhất là \(x=\frac{7\pi}{36}\), nghiệm âm lớn nhất là \(-\frac{13\pi}{36}\)

Tổng của chúng là \(-\frac{\pi}{6}\)

Thùy Oanh Nguyễn
Xem chi tiết
Phương Thùy Lê
4 tháng 9 2020 lúc 22:35

1. T= \(\frac{\pi}{\left|a\right|}=\frac{\pi}{3}\)

2. \(T_1=\frac{2\pi}{2}=\pi\) ; \(T_2=\frac{2\pi}{\frac{1}{2}}=4\pi\)

=> \(T=BCNN\left(\pi;4\pi\right)=4\pi\)

3. \(\left[{}\begin{matrix}5x-45^o=30^o+k360^o\\5x-45^o=-30^o+k360^o\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}5x=75^o+k360^o\\5x=15^o+k360^o\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=15^o+k72^o\\x=3^0+k72^o\end{matrix}\right.\) \(\left(k\in Z\right)\)

Cho k=-1 thì x= -57 độ or x= -69 độ nên lấy x= -57 độ là no âm lớn nhất => Chọn C

4. Có pt hoành độ giao điểm của 2 đths : sinx = sin3x

\(\Leftrightarrow\left[{}\begin{matrix}3x=x+k2\pi\\3x=\pi-x+k2\pi\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=k\pi\\x=\frac{\pi}{4}+\frac{k\pi}{2}\end{matrix}\right.\left(k\in Z\right)\)

trong \(\left(\frac{-\pi}{2};\frac{3\pi}{2}\right)\) với \(x=k\pi\Rightarrow k\in\left\{0;1\right\}\)

với \(x=\frac{\pi}{4}+\frac{k\pi}{4}\Rightarrow k\in\left\{-1;0;1;2\right\}\)

Vậy 2 đths cắt nhau tại 6 điểm trong \(\left(\frac{-\pi}{2};\frac{3\pi}{2}\right)\)

5. cot = \(\sqrt{3}\) \(\Leftrightarrow tanx=\frac{1}{\sqrt{3}}\Leftrightarrow x=\frac{\pi}{6}+k\pi\left(k\in Z\right)\)

x \(\in\left[0;2017\pi\right]\Rightarrow k\in\left\{0;1;2;....;2015;2016\right\}\)

Vậy ptrinh có 2017 nghiệm.

CHÚC BẠN HỌC TỐT..!!

nanako
Xem chi tiết
Nguyễn Việt Lâm
14 tháng 9 2020 lúc 23:08

1.

\(\Leftrightarrow2x-\frac{\pi}{4}=x+\frac{\pi}{3}+k\pi\)

\(\Rightarrow x=\frac{7\pi}{12}+k\pi\)

\(-\pi< \frac{7\pi}{12}+k\pi< \pi\Rightarrow-\frac{19}{12}< k< \frac{5}{12}\Rightarrow k=\left\{-1;0\right\}\) có 2 nghiệm

\(x=\left\{-\frac{5\pi}{12};\frac{7\pi}{12}\right\}\)

2.

\(\Leftrightarrow3x-\frac{\pi}{3}=\frac{\pi}{2}+k\pi\)

\(\Rightarrow x=\frac{5\pi}{18}+\frac{k\pi}{3}\)

Nghiệm âm lớn nhất là \(x=-\frac{\pi}{18}\) khi \(k=-1\)

3.

\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{3\pi}{4}=\frac{\pi}{3}+k2\pi\\x-\frac{3\pi}{4}=\frac{2\pi}{3}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{13\pi}{12}+k2\pi\\x=\frac{17\pi}{12}+k2\pi\end{matrix}\right.\)

Nghiệm âm lớn nhất \(x=-\frac{7\pi}{12}\) ; nghiệm dương nhỏ nhất \(x=\frac{13\pi}{12}\)

Tổng nghiệm: \(\frac{\pi}{2}\)

vvvvvvvv
Xem chi tiết
nguyenthidinh
Xem chi tiết
Doan Minh Cuong
1 tháng 2 2018 lúc 11:29

Với điều kiện \(\left(m-2\cos x\right)\left(m-2\sin x\right)\ne0\) (*) phương trình đã cho tương đương với

\(\left(m\sin x-2\right)\left(m-2\sin x\right)=\left(m\cos x-2\right)=\left(m-2\cos x\right)\)

\(\Leftrightarrow m^2\sin x-2m-2m\sin^2x+4\sin x=m^2\cos x-2m-2m\cos^2x+4\cos x\)

\(\Leftrightarrow2m\left(\cos^2x-\sin^2x\right)-m^2\left(\cos x-\sin x\right)-4\left(\cos x-\sin x\right)=0\)

\(\Leftrightarrow\left(\cos x-\sin x\right)\left(2m\left(\cos x+\sin x\right)-m^2-4\right)=0\) (1)

a) Nếu \(m=0\) thì (1) \(\Leftrightarrow\cos x-\sin x=0\)\(\Leftrightarrow\tan x=1\Leftrightarrow x=\dfrac{\pi}{4}+k\pi\). Nghiệm này sẽ không thỏa mãn điều kiện (*) khi và chỉ khi \(\left(m-2\cos\left(\dfrac{\pi}{4}+k\pi\right)\right)\left(m-2\sin\left(\dfrac{\pi}{4}+k\pi\right)\right)=0\)

\(\Leftrightarrow\left(0-\left(-1\right)^k\sqrt{2}\right)\left(0-\left(-1\right)^k\sqrt{2}=0\right)\)

\(\Leftrightarrow\left(-1\right)^k\sqrt{2}=0\) , vô lí.

Vậy khi \(m=0\), phương trình đã cho có nghiệm là \(x=\dfrac{\pi}{4}+k\pi\)

b) Nếu \(m\ne0\) thì (1) tương đương với tập hợp hai phương trình:

\(\tan x=1\) (2) và \(\sqrt{2}\cos\left(x-\dfrac{\pi}{4}\right)=\dfrac{m^2+4}{2m}\)\(\Leftrightarrow\cos\left(x-\dfrac{\pi}{4}\right)=\dfrac{m^2+4}{2m\sqrt{2}}\) (3)

Trong đó phương trình (3) vô nghiệm vì \(\left|\dfrac{m^2+4}{2m\sqrt{2}}\right|=\dfrac{m^2+4}{2\sqrt{2}\left|m\right|}\ge\dfrac{2\sqrt{4m^2}}{2\sqrt{2}\left|m\right|}=\sqrt{2}>1\).

Phương trình (2) có nghiệm là \(x=\dfrac{\pi}{4}+k\pi\). Nghiệm này sẽ không thỏa mãn điều kiện (*) khi và chỉ khi

\(\left(m-2\cos\left(\dfrac{\pi}{4}+k\pi\right)\right)\left(m-2\sin\left(\dfrac{\pi}{4}+k\pi\right)\right)=0\)\(\Leftrightarrow\left(m-\left(-1\right)^k\sqrt{2}\right)\left(m-\left(-1\right)^k\sqrt{2}=0\right)\)

\(\Leftrightarrow m=\left(-1\right)^k\sqrt{2}\), trái giả thiết \(m\ne\pm\sqrt{2}\).

Tóm lại, trong mọi trường hợp phương trình đã cho có nghiệm \(x=\dfrac{\pi}{4}+k\pi\) Điều kiện \(x\in[20\pi;30\pi]\) tương đương với \(20\pi\le\dfrac{\pi}{4}+k\pi\le30\pi\)\(\Leftrightarrow20-\dfrac{1}{4}\le k\le30-\dfrac{1}{4}\)\(\Leftrightarrow k=21;22;23;...;29\). Số nghiệm của phương trình trong đoạn đang xét là 9.

Phụng Nguyễn Thị
Xem chi tiết