\(\dfrac{a-\sqrt{3a}+3}{a\sqrt{a}+3\sqrt{3}}\)
giúp mình với
a \(\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
b \(\sqrt{\dfrac{2a}{3}}.\sqrt{\dfrac{3a}{8}}\) với a>0
c \(\sqrt{5a.45a}-3a\) với a<0
a: \(\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{4}+\sqrt{6}+\sqrt{8}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=1+\sqrt{2}\)
b: \(\sqrt{\dfrac{2a}{3}}\cdot\sqrt{\dfrac{3a}{8}}=\sqrt{\dfrac{6a^2}{24}}=\sqrt{\dfrac{a^2}{4}}=\dfrac{a}{2}\)
c: \(\sqrt{5a\cdot45a}-3a=-15a-3a=-18a\)
Tìm điều kiện xác định của a để các căn sau có nghĩa:
1.
\(\sqrt{\dfrac{-a}{3}}\)
2. \(\sqrt{\dfrac{a^2+1}{1-3a}}\)
3. \(\sqrt{a^2-6a+10}\)
4. \(\sqrt{\dfrac{a-1}{a+2}}\)
Làm ơn giúp mình với. Cảm ơn mọi người nhiều❤
1)Để căn có nghĩa \(\Leftrightarrow\dfrac{-a}{3}\ge0\Leftrightarrow a\le0\)
Vậy...
2)Để căn có nghĩa \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{a^2+1}{1-3a}\ge0\\1-3a\ne0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}1-3a>0\left(vìa^2+1>0\right)\\1-3a\ne0\end{matrix}\right.\)
\(\Leftrightarrow1-3a>0\Leftrightarrow3a< 1\Leftrightarrow a< \dfrac{1}{3}\)
Vậy...
3)Để căn có nghĩa
\(\Leftrightarrow a^2-6a+10\ge0\Leftrightarrow\left(a^2-6a+9\right)+1\ge0\Leftrightarrow\left(a-3\right)^2+1\ge0\left(lđ;\forall a\right)\)
Vậy căn luôn có nghĩa với mọi a
4)Để căn có nghĩa \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{a-1}{a+2}\ge0\\a+2\ne0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}\left\{{}\begin{matrix}a-1\ge0\\a+2>0\end{matrix}\right.\\\left\{{}\begin{matrix}a-1\le0\\a+2< 0\end{matrix}\right.\end{matrix}\right.\\a+2\ne0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a\ge1\\a>-2\end{matrix}\right.\\\left\{{}\begin{matrix}a\le1\\a< -2\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}a\ge1\\a< -2\end{matrix}\right.\)
Vậy...
a : \(\sqrt{\dfrac{2a}{3}}.\sqrt{\dfrac{3a}{8}}\) với a ≥ 0
b : \(\sqrt{3a}.\sqrt{\dfrac{52}{a}}\)với a ≥ 0
c : \(2y^2.\sqrt{\dfrac{x^4}{4y^2}}\)với y ≤ 0
a) \(\sqrt{\dfrac{2a}{3}}\cdot\sqrt{\dfrac{3a}{8}}\)
\(=\sqrt{\dfrac{2a\cdot3a}{3\cdot8}}\)
\(=\sqrt{\dfrac{6a^2}{24}}\)
\(=\sqrt{\dfrac{a^2}{4}}\)
\(=\dfrac{\sqrt{a^2}}{\sqrt{4}}\)
\(=\dfrac{a}{2}\)
b) \(\sqrt{3a}\cdot\sqrt{\dfrac{52}{a}}\)
\(=\sqrt{3a\cdot\dfrac{52}{a}}\)
\(=\sqrt{3\cdot52}\)
\(=\sqrt{13\cdot3\cdot4}\)
\(=2\sqrt{39}\)
c) \(2y^2\cdot\sqrt{\dfrac{x^4}{4y^2}}\)
\(=2y^2\cdot\dfrac{\sqrt{\left(x^2\right)^2}}{\sqrt{\left(2y\right)^2}}\)
\(=2y^2\cdot\dfrac{x^2}{-2y}\)
\(=\dfrac{2y^2\cdot x^2}{-2y}\)
\(=-x^2y\)
\(\dfrac{a-b}{\sqrt{a}-\sqrt{b}}-\dfrac{\sqrt{a^3}+\sqrt{\text{b}^3}}{a-b}\)
giúp mình với
rút gọn à bạn?
\(\dfrac{a-b}{\sqrt{a}-\sqrt{b}}-\dfrac{\sqrt{a^3}+\sqrt{b^3}}{a-b}\)
\(=\dfrac{\left(a-b\right)\left(\sqrt{a}+\sqrt{b}\right)-\sqrt{a^3}-\sqrt[]{b^3}}{\left(\sqrt{x}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\)
\(=\dfrac{a\sqrt{a}-b\sqrt{a}+a\sqrt{b}-b\sqrt{b}-a\sqrt{a}-b\sqrt[]{b}}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\)
\(=\dfrac{-b\sqrt{a}+\left(a-2b\right)\sqrt{b}}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\)
Tìm điều kiện có nghĩa:
1) \(\sqrt{\dfrac{2}{3-2a}}\)
2) \(\sqrt{\dfrac{-1}{2a-5}}\)
3) \(\sqrt{\dfrac{-2}{3-5a}}\)
4) \(\dfrac{1}{\sqrt{-3a}}\)
5) \(\sqrt{\dfrac{-a}{5}}\)
LÀM CHI TIẾT GIÚP MK NHÉ!
1) \(ĐK:3-2a>0\Leftrightarrow a< \dfrac{3}{2}\)
2) \(ĐK:2x-5< 0\Leftrightarrow x< \dfrac{5}{2}\)
3) \(ĐK:3-5a< 0\Leftrightarrow a>\dfrac{3}{5}\)
4) \(ĐK:a< 0\)
5) \(ĐK:-a\ge0\Leftrightarrow a\le0\)
Với a\(\ge\dfrac{3}{8}\), chứng minh rằng \(\sqrt[3]{3a-1+a\sqrt{8a-3}}+\sqrt[3]{3a-1-a\sqrt{8a-3}}\)=1
Với giá trị nào của a thì mỗi căn thức sau có nghĩa:
a,\(\sqrt{\dfrac{a}{3}}\) ; b, \(\sqrt{-5a}\) ; c, \(\sqrt{4-a}\) ; d, \(\sqrt{3a+7}\)
Giúp với ạ
Mink đag cần gấp. Chiều nộp r
a) ĐKXĐ: \(\dfrac{a}{3}\ge0\Leftrightarrow a\ge0\)
b) ĐKXĐ: \(-5a\ge0\Leftrightarrow a\le0\)
c) ĐKXĐ: \(4-a\ge0\Leftrightarrow a\le4\)
d) ĐKXĐ: \(3a+7\ge0\Leftrightarrow a\ge-\dfrac{7}{3}\)
a: ĐKXĐ: \(a\ge0\)
b: ĐKXĐ: \(a\le0\)
c: ĐKXĐ: \(a\le4\)
d: ĐKXĐ: \(a\ge-\dfrac{7}{3}\)
Với a \(a\le0,tính\sqrt{\dfrac{-2a}{3}}.\sqrt{\dfrac{-3a}{8}}\)
\(\sqrt{\dfrac{-2a}{3}}.\sqrt{\dfrac{-3a}{8}}=\sqrt{\dfrac{-2a}{3}.\dfrac{-3a}{8}}=\sqrt{\dfrac{a^2}{4}}=\dfrac{\left|a\right|}{2}=-\dfrac{a}{2}\left(do.a\le0\right)\)
Cho \(P=\left(\dfrac{a-3\sqrt{a}+2}{3a-7\sqrt{a}+2}-\dfrac{\sqrt{a}-3}{3a-8\sqrt{a}-3}+\dfrac{8\sqrt{a}}{9a-1}\right):\left(1-\dfrac{2\sqrt{a}-a+1}{3\sqrt{a}+1}\right)\)
Tìm giá trị nguyên lớn nhất của a để \(P>\dfrac{3}{\left|1-3\sqrt{5}\right|}\)
a =4 .bạn xem MÌNH trả lời câu hỏi của NGUYỄN THỊ DIỆP
B3: làm phép chia :
\(\sqrt{\dfrac{a-1}{a+2}}\div\sqrt{\dfrac{a+2}{a^3-3a^2+3a-1}}\) với a>1
Ta có: \(\sqrt{\dfrac{a-1}{a+2}}:\sqrt{\dfrac{a+2}{a^3-3a^2+3a-1}}\)
\(=\sqrt{\dfrac{a-1}{a+2}\cdot\dfrac{\left(a-1\right)^3}{a+2}}\)
\(=\dfrac{a^2-2a+1}{a+2}\)