Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ngô Hải Nam
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 12 2022 lúc 22:21

A=(x^2+5x-6)(x^2+5x+6)

=(x^2+5x)^2-36>=-36

Dấu = xảy ra khi x=0 hoặc x=-5

Lê Quang Trường
Xem chi tiết
alibaba nguyễn
22 tháng 2 2019 lúc 8:06

\(A=8\left(x-2\right)^4+8\ge8\)

Lê Quang Trường
23 tháng 2 2019 lúc 14:27

chúc mừng bạn đã hoàn thành bài làm khi mình đã biết làm 

vì vậy mình sẽ ko cho bạn

alibaba nguyễn
23 tháng 2 2019 lúc 16:24

Uk hiểu rồi từ này về sau sẽ tránh câu hỏi của bạn. Yên tâm.

Bướm
Xem chi tiết
Thanh Tùng DZ
5 tháng 6 2019 lúc 10:01

Ta có : 

\(A=\left(x-1\right)^4+\left(x-3\right)^4+6\left(x-1\right)^2\left(x-3\right)^2\)

\(A=\left(x-1\right)^4+2\left(x-1\right)^2\left(x-3\right)^2+\left(x-3\right)^4+4\left(x-1\right)^2\left(x-3\right)^2\)

\(A=\left[\left(x-1\right)^2+\left(x-3\right)^2\right]^2+4\left(x-1\right)^2\left(x-3\right)^2\)

\(A=\left[2x^2-8x+10\right]^2+4\left(x^2-4x+3\right)^2\)

\(A=\left[2\left(x-2\right)^2+2\right]+4\left[\left(x-2\right)^2-1\right]^2\)

\(A=4\left(x-2\right)^4+8\left(x-2\right)^2+4+4\left(x-2\right)^4-8\left(x-2\right)^2+4\)

\(A=8\left(x-2\right)^4+8\ge8\)

Vậy GTNN của biểu thức A là 8 \(\Leftrightarrow x=2\)

Đặt x-2=y

=> \(A=\left(y+1\right)^4+\left(y-1\right)^4+6\left(y+1\right)^2\left(y-1\right)^2\)

Khai triển A ta được 

\(A=2y^4+12y^2+2+6\left(y^4-2y^2+1\right)\)

\(=8y^4+8=8\left(y^4+1\right)\ge8\)

Dấu "=" xảy ra khi y=0 lúc đó x=0+2=2

Vậy Amin=8 khi x=2

Admin (a@olm.vn)
Xem chi tiết
Hương	Hà Huỳnh
29 tháng 8 2021 lúc 10:41

Giấ trị nhỏ nhất là 8

Khách vãng lai đã xóa
Nguyên	Bùi Đình
29 tháng 8 2021 lúc 13:18

GTNN = 8 đạt khi   t=0\Leftrightarrow x=2

                   
Khách vãng lai đã xóa
Linh_Chi_chimte
Xem chi tiết

\(A=\left(x-1\right)\left(x-8\right)\left(x-4\right)\left(x-5\right)+2002\)

\(\Leftrightarrow A=\left(x^2-9x+8\right)\left(x^2-9x+20\right)+2002\)

Đặt \(x^2-9x+14=y\)

\(\Rightarrow A=\left(y-6\right)\left(y+6\right)+2002\)

\(\Leftrightarrow A=y^2-36+2002\)

\(\Leftrightarrow A=y^2+1966\ge1966\)

Dấu "=" xảy ra khi

 \(x^2-9x+14=0\)

\(\Leftrightarrow x=2,7\)

Nàng tiên cá
Xem chi tiết
kudo shinichi
15 tháng 12 2018 lúc 19:29

\(C=\left(x-1\right)\left(x+3\right)\left(x+2\right)\left(x+6\right)\)

\(C=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)

\(C=\left(x^2+5x\right)^2-36\)

Ta có: \(\left(x^2+5x\right)^2\ge0\forall x\)

\(\Rightarrow\left(x^2+5x\right)^2-36\ge-36\forall x\)

\(C=-36\Leftrightarrow\left(x^2+5x\right)^2=0\Leftrightarrow x^2+5x=0\Leftrightarrow x\left(x+5\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)

Vậy \(C_{min}=-36\Leftrightarrow\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)

l҉o҉n҉g҉ d҉z҉
8 tháng 8 2020 lúc 22:10

C = ( x - 1 )( x + 3 )( x + 2 )( x + 6 ) 

C = [( x - 1 )( x + 6 )][( x + 3 )( x + 2 )]

C = ( x2 + 5x - 6 )( x2 + 5x + 6 )

Đặt a = x2 + 5x 

=> C = ( a - 6 )( a + 6 ) = a2 - 36 

\(a^2\ge0\forall a\Rightarrow a^2-36\ge-36\)

Dấu " = " xảy ra <=> a2 = 0 => a = 0

<=> x2 + 5x = 0

<=> x( x + 5 ) = 0

<=> \(\orbr{\begin{cases}x=0\\x+5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)

Vậy CMin = -36, đạt được khi x = 0 hoặc x = -5

Khách vãng lai đã xóa
khoimzx
Xem chi tiết
Hồng Phúc
20 tháng 2 2021 lúc 16:54

Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\):

\(A=\left|x-3\right|+\left|x-1\right|+\left|x+1\right|+\left|x+3\right|\)

\(=\left|3-x\right|+\left|x+3\right|+\left|1-x\right|+\left|x+1\right|\)

\(\ge\left|3-x+x+3\right|+\left|1-x+x+1\right|=8\)

\(minA=8\Leftrightarrow\left\{{}\begin{matrix}\left(3-x\right)\left(x+3\right)\ge0\\\left(1-x\right)\left(x+1\right)\ge0\end{matrix}\right.\Leftrightarrow-1\le x\le1\)

Sonyeondan Bangtan
Xem chi tiết
Trần Minh Hoàng
12 tháng 1 2021 lúc 16:15

c) \(h\left(x\right)=\left(x+1\right)^2+\left(\dfrac{x^2+2x+2}{x+1}\right)^2=\left(x+1\right)^2+\left(x+1+\dfrac{1}{x+1}\right)^2=2\left(x+1\right)^2+\dfrac{1}{\left(x+1\right)^2}+2\ge_{AM-GM}2\sqrt{2}+2\).

Đẳng thức xảy ra khi \(2\left(x+1\right)^2=\dfrac{1}{\left(x+1\right)^2}\Leftrightarrow x=\pm\sqrt{\dfrac{1}{2}}-1\).

Trần Minh Hoàng
12 tháng 1 2021 lúc 16:13

b) \(g\left(x\right)=\dfrac{\left(x+2\right)\left(x+3\right)}{x}=\dfrac{x^2+5x+6}{x}=\left(x+\dfrac{6}{x}\right)+5\ge_{AM-GM}2\sqrt{6}+5\).

Đẳng thức xảy ra khi x = \(\sqrt{6}\).

Nguyễn Việt Lâm
12 tháng 1 2021 lúc 17:26

Câu a muốn có min thì đề bài phải là \(x\ge4\) (có dấu "=")

Còn \(x>4\) thì chắc là đề sai

DTD2006ok
Xem chi tiết
Mai Anh Nguyen
Xem chi tiết