Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lil Shroud
Xem chi tiết
Nguyễn Việt Lâm
18 tháng 9 2021 lúc 17:23

a.

\(a+b+c\ge3\sqrt[3]{abc}=6\) \(\Rightarrow2\left(a+b+c\right)\ge12\Rightarrow-12\ge-2\left(a+b+c\right)\)

Ta có:

\(a^2+b^2+c^2=a^2+4+b^2+4+c^2+4-12\ge4a+4b+4c-2\left(a+b+c\right)=2\left(a+b+c\right)\)

b.

\(a^3+b^3+c^3=\dfrac{1}{2}\left(a^3+a^3+8\right)+\dfrac{1}{2}\left(b^3+b^3+8\right)+\dfrac{1}{2}\left(c^3+c^3+8\right)-12\)

\(\ge3a^2+3b^2+3c^2-12\ge3a^2+3b^2+3c^2-2\left(a+b+c\right)\ge3a^2+3b^2+3c^2-\left(a^2+b^2+c^2\right)=...\)

Nguyen Thanh Hien
Xem chi tiết
Akai Haruma
31 tháng 8 2023 lúc 0:19

Lời giải:
Đặt $\frac{a+b}{a-b}=x; \frac{b+c}{b-c}=y; \frac{c+a}{c-a}=z$. Khi đó:

$xy+yz+xz=\frac{(a+b)(b+c)}{(a-b)(b-c)}+\frac{(a+b)(c+a)}{(a-b)(c-a)}+\frac{(b+c)(c+a)}{(b-c)(c-a)}$

$=\frac{(a+b)(b+c)(c-a)+(b+c)(c+a)(a-b)+(c+a)(a+b)(b-c)}{(a-b)(b-c)(c-a)}=-1$
Suy ra:

$(\frac{a+b}{a-b})^2+(\frac{b+c}{b-c})^2+(\frac{c+a}{c-a})^2=x^2+y^2+z^2=(x+y+z)^2-2(xy+yz+xz)$

$=(x+y+z)^2+2\geq 2$

Ta có đpcm.

vung nguyen thi
Xem chi tiết
Nguyen Thi Bich Huong
Xem chi tiết
Nguyễn Việt Lâm
9 tháng 3 2020 lúc 15:54

Điều kiện là các số đôi một khác nhau:

Đặt \(\left(a+b;b+c;c+a\right)=\left(x;y;z\right)\) BĐT trở thành:

\(\frac{x^2}{\left(y-z\right)^2}+\frac{y^2}{\left(z-x\right)^2}+\frac{z^2}{\left(x-y\right)^2}\ge2\)

Bạn tham khảo ở đây:

Câu hỏi của tư mã chiêu - Toán lớp 9 | Học trực tuyến

Khách vãng lai đã xóa
Sĩ Bí Ăn Võ
Xem chi tiết
missing you =
Xem chi tiết
Nguyễn Thùy Linh
Xem chi tiết
lê quỳnh như
Xem chi tiết
Kẻ Huỷ Diệt
29 tháng 5 2017 lúc 19:56

Theo bất đẳng thức AM - GM:

     \(a^2+b^2+c^2\ge3\sqrt[3]{\left(abc\right)^2}\)

Ta có:

     \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)\(\forall a,b,c\text{ không âm}\)

\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ac+a^2\ge0\)

\(\Leftrightarrow a^2+b^2+c^2+a^2+b^2+c^2\ge2ab+2bc+2ca\)

\(\Leftrightarrow a^2+b^2+c^2+3\sqrt[3]{\left(abc\right)^2}\ge2\left(ab+bc+ca\right)\)(ĐPCM)

Đẳng thức xảy ra <=> a = b = c.

_Kik nha!! ^ ^

lê quỳnh như
29 tháng 5 2017 lúc 20:59

làm sai sao kik đc

Kitana
14 tháng 9 2017 lúc 17:07

hihihihi

nub
Xem chi tiết
tth_new
4 tháng 4 2020 lúc 13:33

3 bài thì thấy 1 bài có trên mạng rồi, buồn thật:( Bài cuối từ từ tí mở Maple lên check đề. Thấy lạ lạ không dám làm ngay:v

Bài 1: Ez game, chỉ là Buffalo Way, mà Ji Chen (tác giả BĐT Iran 96 có giải rồi, mình không giải lại): hard inequalities

Bài 2: Đặt \(\left(a;b;c\right)=\left(\frac{3x}{x+y+z};\frac{3y}{x+y+z};\frac{3z}{x+y+z}\right)\) rồi quy đồng lên xem.

Bài 3: Tí check đề cái đã.

Khách vãng lai đã xóa
tth_new
4 tháng 4 2020 lúc 13:37

Bài 3: Biết lắm mà: Check: \(a=b=1;c=\frac{1}{2}\) thì \(VT-VP=-\frac{1}{8}< 0\)

P/s: Nếu bạn sửa đề, hãy đăng vào bên dưới câu hỏi bạn nhé! Để người đọc còn hiểu mình đang trả lời cái nào:D

Khách vãng lai đã xóa
tth_new
4 tháng 4 2020 lúc 14:28

Bài 1: Ji Chen có nêu một cách phân tích bán SOS rất hay: Tight inequalities

Khách vãng lai đã xóa
Lộc Nguyễn Phúc
Xem chi tiết
Hatsune Miku
17 tháng 2 2017 lúc 22:01

..... ko biết đợi đứa khác đê

Thắng Nguyễn
18 tháng 2 2017 lúc 17:57

C/m bằng biến đổi tương đương như sau

\(Σ\frac{a^2}{\left(b-c\right)^2}-2=\left(Σ\frac{a}{b-c}\right)^2-2Σ\frac{ab}{\left(b-c\right)\left(c-a\right)}-2\)

\(=\frac{\left(Σ\left(a^3-a^2b-a^2c+abc\right)\right)^2}{╥\left(a-b\right)^2}-2\frac{Σ\left(a^2b-a^2c\right)}{╥\left(a-b\right)}-2\)

\(=\frac{\left(Σ\left(a^3-a^2b-a^2c+abc\right)\right)^2}{╥\left(a-b\right)^2}+2-2\ge0\)

P/s: \(╥\) dùng thay cho ∏ nhé, tại olm đã ít kí hiệu lại ko cho paste nên dùng tạm