Cho a+b+c = 1 và a,b,c > 0. Cmr: ab + bc + ac - abc \(\le\) \(\dfrac{8}{27}\)
Cho a,b,c\(\ge0\), a+b+c=1
CMR: \(0\le ab+ac+bc-2abc\le\dfrac{7}{27}\)
Lời giải:
Vế đầu:
Áp dụng BĐT AM-GM:
$(ab+bc+ac)(a+b+c)\geq 9abc$
$\Leftrightarrow ab+bc+ac\geq 9abc$
$\Rightarrow ab+bc+ac-2abc\geq 9abc-2abc=7abc\geq 0$ do $a,b,c\geq 0$
Vế sau:
Áp dụng BĐT Schur:
$abc\geq (a+b-c)(b+c-a)(c+a-b)=(1-2a)(1-2b)(1-2c)$
$\Leftrightarrow 9abc\geq 4(ab+bc+ac)-1$
$\Rightarrow 2abc\geq \frac{8}{9}(ab+bc+ac)-\frac{2}{9}$
$\Rightarrow ab+bc+ac-2abc\leq ab+bc+ac-[\frac{8}{9}(ab+bc+ac)-\frac{2}{9}]=\frac{ab+bc+ac}{9}+\frac{2}{9}$
$\leq \frac{(a+b+c)^2}{27}+\frac{2}{9}$ (theo BĐT AM-GM)
$=\frac{1}{27}+\frac{2}{9}=\frac{7}{27}$
Ta có đpcm.
Cho a, b, c > 0 thỏa mãn abc = 8. CMR:
\(\dfrac{a}{ac+4}+\dfrac{b}{ab+4}+\dfrac{c}{bc+4}\le\dfrac{a^2+b^2+c^2}{16}\)
BĐT bị ngược dấu, BĐT đúng phải là:
\(\dfrac{a}{ac+4}+\dfrac{b}{ab+4}+\dfrac{c}{bc+4}\le\dfrac{a^2+b^2+c^2}{16}\)
Cho a+b+c = 1 và a,b,c > 0. Cmr: ab + bc + ac - abc < \(\dfrac{8}{27}\)
Cho a+b+c = 1 và a,b,c > 0. Cmr: ab + bc + ac - abc < \(\dfrac{8}{27}\)
cho ba số dương \(0\le a\le b\le c\le1\) CMR \(\dfrac{a}{bc+1}+\dfrac{b}{ac+1}+\dfrac{c}{ab+1}\le2\)
Vì \(0\le a\le b\le c\le1\) nên:
\(\left(a-1\right)\left(b-1\right)\ge ab+1\ge a+b\Leftrightarrow\dfrac{1}{ab+1}\le\dfrac{1}{a+b}\Leftrightarrow\dfrac{c}{ab+1}\le\dfrac{c}{a+b}\left(1\right)\)
Tương tự: \(\dfrac{a}{bc+1}\le\dfrac{a}{b=c}\left(2\right);\dfrac{b}{ac+1}\le\dfrac{b}{a+c}\left(3\right)\)
Do đó: \(\dfrac{a}{bc+1}+\dfrac{b}{ac+1}+\dfrac{c}{ab+1}\le\dfrac{a}{b+c}+\dfrac{b}{a+c}+\dfrac{c}{a+b}\left(4\right)\)
Mà: \(\dfrac{a}{b+c}+\dfrac{b}{a+c}+\dfrac{c}{a+b}\le\dfrac{2a}{a+b+c}+\dfrac{2b}{a+b+c}+\dfrac{2c}{a+b+c}=\dfrac{2\left(a+b+c\right)}{a+b+c}=2\left(5\right)\)
Từ (4) và (5) suy ra \(\dfrac{a}{bc+1}+\dfrac{b}{ac+1}+\dfrac{c}{ab+1}\left(đpcm\right)\)
a, a,b,c>0. CMR:\(\dfrac{ab}{a+b+2c}+\dfrac{bc}{b+c+2a}+\dfrac{ac}{a+c+2b}\le\dfrac{a+b+c}{4}\)
b, a,b,c>0. CMR:\(\dfrac{ab}{a+3b+2c}+\dfrac{bc}{b+3c+2a}+\dfrac{ac}{c+3a+2b}\le\dfrac{a+b+c}{6}\)
a.
\(\sum\dfrac{ab}{a+c+b+c}\le\dfrac{1}{4}\sum\left(\dfrac{ab}{a+c}+\dfrac{ab}{b+c}\right)=\dfrac{a+b+c}{4}\)
2.
\(\dfrac{ab}{a+3b+2c}=\dfrac{ab}{a+b+2c+2b}\le\dfrac{ab}{9}\left(\dfrac{4}{a+b+2c}+\dfrac{1}{2b}\right)=4.\dfrac{ab}{a+b+2c}+\dfrac{a}{18}\)
Quay lại câu a
\(b,\dfrac{ab}{a+3b+2c}=\left(\dfrac{1}{9}ab\right)\cdot\dfrac{9}{\left(a+c\right)+\left(b+c\right)+2b}\le\left(\dfrac{1}{9}ab\right)\cdot\left(\dfrac{1}{a+c}+\dfrac{1}{b+c}+\dfrac{1}{2b}\right)=\dfrac{1}{9}\cdot\left(\dfrac{ab}{a+b}+\dfrac{ab}{b+c}+\dfrac{a}{2}\right)\)
Cmtt: \(\dfrac{bc}{b+3c+2a}\le\dfrac{1}{9}\cdot\left(\dfrac{bc}{a+b}+\dfrac{bc}{a+b}+\dfrac{b}{2}\right);\dfrac{ca}{c+3a+2b}\le\dfrac{1}{9}\cdot\left(\dfrac{ca}{b+c}+\dfrac{ca}{a+b}+\dfrac{c}{2}\right)\)
\(\Rightarrow VT\le\dfrac{1}{9}\left(\dfrac{bc+ca}{a+b}+\dfrac{ab+ac}{b+c}+\dfrac{ab+bc}{a+c}+\dfrac{a+b+c}{2}\right)\\ \le\dfrac{1}{9}\left(a+b+c+\dfrac{a+b+c}{2}\right)=\dfrac{1}{9}\cdot\dfrac{3}{2}\left(a+b+c\right)=\dfrac{a+b+c}{6}\)
Dấu $"="$ khi $a=b=c$
CHo a+b+c=1 (a,b,c>0) CMR:
S=\(\dfrac{bc}{\sqrt{a+bc}}+\dfrac{ac}{\sqrt{b+ac}}+\dfrac{ab}{\sqrt{c+ab}}\le\dfrac{1}{2}\)
Cho a,b,c>0 CMR :
\(\dfrac{ab}{a+b}+\dfrac{bc}{b+c}+\dfrac{ac}{a+c}\le\dfrac{a+b+c}{2}\)
Áp dụng bđt cosi ta có:
`a+b>=2sqrt{ab}`
`=>(ab)/(a+b)<=(sqrt{ab})/2`
Chứng minh tt:
`(bc)/(b+c)<=(sqrt{bc})/2`
`(ca)/(a+c)<=(sqrt{ca})/2`
`=>VT<=(sqrt{ab}+sqrt{bc}+sqrt{ca})/2`
Áp dụng cosi:
`sqrt{ab}<=(a+b)/2`
`sqrt{bc}<=(b+c)/2`
`sqrt{ca}<=(c+a)/2`
`=>(sqrt{ab}+sqrt{bc}+sqrt{ca})/2<=(a+b+c)/2`
`=>VT<=(a+b+c)/2`
Câu 1 :
a) Cho 3 số dương \(0\le a\le b\le c\le1.CMR\dfrac{a}{bc+1}+\dfrac{b}{ac+1}+\dfrac{c}{ab+1}\le2\)
b. Cho a,b,c là 3 cạnh của một tam giác. CMR \(2\left(ab+bc+ca\right)>a^2+b^2+c^2\)