Lời giải:
Áp dụng BĐT Schur bậc 3:
\(abc\geq (a+b-c)(b+c-a)(c+a-b)\)
\(\Leftrightarrow abc\geq (1-2c)(1-2a)(1-2b)\)
\(\Leftrightarrow 9abc\geq 4(ab+bc+ac)-1\) (thay \(a+b+c=1\) )
\(\Rightarrow abc\geq \frac{4}{9}(ab+bc+ac)-\frac{1}{9}\)
\(\Rightarrow ab+bc+ac-abc\leq \frac{5}{9}(ab+bc+ac)+\frac{1}{9}\)
Theo hệ quả quen thuộc của BĐT AM-GM
\(ab+bc+ac\leq \frac{(a+b+c)^2}{3}=\frac{1}{3}\Rightarrow \frac{5}{9}(ab+bc+ac)+\frac{1}{9}\leq \frac{8}{27}\)
\(\Rightarrow ab+bc+ac-abc\leq \frac{8}{27}\) (đpcm)
Dấu bằng xảy ra khi $3a=3b=3c=1$
À rồi, vừa mới nghĩ ra cách khác:
Ta có:
\(ab+bc+ac-abc=b(a+c)+ac-ac(1-a-c)\)
\(=b(a+c)+ac(a+c)=(a+c)(b+ac)=(a+c)(1-a-c+ac)=(a+c)(1-a)(1-c)\)
Áp dụng BĐT AM-GM:
\((a+c)(1-a)(1-c)\leq \left(\frac{a+c+1-a+1-c}{3}\right)^3=\frac{8}{27}\)
Ta có đpcm
Dấu "=" xảy ra khi $a=b=c=\frac{1}{3}$