3.Vẽ tam giác ABC vuông tại A,góc B=α,biết
a) tanα=2 b) sinα=\(\dfrac{3}{5}\)
1/ Cho tam giác ABC vuông tại B xét góc nhọn A =α hệ thức nào sai?
A. Sinα= BC/AC B. Cosα= AB/AC C. Tanα= BC/AC D. Cotα= AB/AC
a/ Không sử dụng máy tính .Cho góc nhọn α , biết sinα = \(\dfrac{\sqrt{3}}{2}\) . Hãy tính cosα ; tanα ; cotα.
b/ Không sử dụng máy tính .Cho góc nhọn α , biết cosα = \(\dfrac{\sqrt{5}}{7}\) . Hãy tính cosα ; tanα ; cotα.
a: \(\cos\alpha=\dfrac{1}{2}\)
\(\tan\alpha=\sqrt{3}\)
\(\cot\alpha=\dfrac{\sqrt{3}}{3}\)
Cho A B C ^ = 60 0 và ∆ABC tam giác nhọn
a, Tính sinα, tanα, cotα, biết cosα = 1 5
b, Tính cosα, tanα, cotα, biết sinα = 2 3
c, Cho tanα = 2. Tính sinα, cosα, cotα
d, Cho cotα = 3. Tính sinα, cosα, tanα
a, Tìm được sinα = 24 5 , tanα = 24 , cotα = 1 24
b, cosα = 5 3 , tanα = 2 5 , cotα = 5 2
c, sinα = ± 2 5 , cosα = ± 1 5 , cotα = 1 2
d, sinα = ± 1 10 , cosα = ± 3 10 , tanα = 1 3
Xét tam giác ABC vuông tại A, gọi α là góc tạo bởi 2 đg trung tuyến BM và CN của tam giác. Cmr: sinα ≤ 3/5
Gọi I là giao điểm MB, CN thì I là trọng tâm tam giác
\(sin\widehat{ACN}=\dfrac{AB}{2CN}=\dfrac{AB}{\sqrt{4AC^2+AB^2}}\) ; \(BM=\sqrt{\dfrac{AC^2}{4}+AB^2}\Rightarrow IM=\dfrac{1}{3}\sqrt{\dfrac{AC^2}{4}+AB^2}\)
Ta có: \(\dfrac{sin\widehat{CIM}}{CM}=\dfrac{sin\widehat{ACN}}{IM}\Leftrightarrow sin\alpha=\dfrac{CM}{IM}sin\widehat{ACN}=\dfrac{AC}{\dfrac{2}{3}\sqrt{\dfrac{AC^2}{4}+AB^2}}.\dfrac{AB}{\sqrt{4AC^2+AB^2}}\)
\(\Leftrightarrow sin\alpha=\dfrac{3AB.AC}{\sqrt{\left(4AB^2+AC^2\right)\left(4AC^2+AB^2\right)}}\le\dfrac{3AB.AC}{5AB.AC}=\dfrac{3}{5}\)
Tính các tỉ số lượng giác còn lại của góc α bt
a/sinα =0.6
b/ tanα = 3/4
Dựng góc nhọn α,biết:
a, sinα = 2 3
b, cosα = 2 5
c, tanα = 2
d, cotα = 4 5
Dựng góc α, sau đó sử dụng máy tính và thước đo góc để tìm số đo gần đúng của a.
a) sinα = \(\dfrac{1}{3}\)
b) cosα = \(\dfrac{1}{2}\)
c) tanα = 1
d) cotα = 2
cho tam giác ABC vuông tại A. Biết AB=30cm góc B = α cot α\(\dfrac{5}{12}\) tính độ dài các cạnh BC, AC
Ta có: \(cot\alpha=\dfrac{5}{12}\)
\(\Rightarrow\dfrac{AC}{AB}=\dfrac{5}{12}\Leftrightarrow\dfrac{AC}{30}=\dfrac{5}{12}\)
\(\Rightarrow AC=\dfrac{5\cdot30}{12}=12,5\left(cm\right)\)
Ta có \(\Delta ABC\) vuông tại A áp dụng định lý Py-ta-go ta có:
\(BC=\sqrt{AC^2+AB^2}=\sqrt{30^2+12,5^2}=32,4\left(cm\right)\)
sinα = 2, tanα = 2, cotα = 2 biết cosα = \(\dfrac{1}{3}\) α∈ (0;\(\dfrac{\pi}{2}\))
Tính cosα
$\sin \alpha =2$?? $\sin \alpha \in [-1;1]$ với mọi $\alpha$ mà bạn. Bạn xem lại đề.
Cho ΔABC vuông tại A có góc B =α .Chứng minh rằng
a/ tanα=sinα trên cosα ;cotgα =cosα trên sinα;tanα.cotgα =1
b/ sin2α +cos2 α =1
Giúp mình bài này nha .mình cám ơn
Xét tam giác vuông có ba cạnh AB, AC , BC lần lượt là c,b,a
a) Ta có : \(tan\alpha=\frac{b}{c}=\frac{\frac{b}{a}}{\frac{c}{a}}=\frac{sin\alpha}{cos\alpha}\)
\(cotg\alpha=\frac{c}{b}=\frac{\frac{c}{a}}{\frac{b}{a}}=\frac{cos\alpha}{sin\alpha}\)
\(tan\alpha.cotg\alpha=\frac{b}{c}.\frac{c}{b}=1\)
b) Ta có : \(sin^2\alpha=\frac{b^2}{a^2},cos^2\alpha=\frac{c^2}{a^2}\Rightarrow sin^2\alpha+cos^2\alpha=\frac{b^2+c^2}{a^2}=\frac{a^2}{a^2}=1\)