cho tanα = \(\dfrac{3}{4}\)
tính sinα, cosα, cotα
Cho góc nhọn α. Tính tanα biết cosα = \(\dfrac{3}{4}\).
a) Biết Sin α.cos α=\(\dfrac{12}{25}\). Tính tỉ số lượng giác của góc α
b) Biết Sin α=\(\dfrac{3}{5}\). Tính A=5.Sin2α + 6cos2α
c) Biết cot α=\(\dfrac{4}{3}\). Tính D=\(\dfrac{Sin\alpha+cos\alpha}{Sin\alpha-cos\alpha}\)
Sử dụng định nghĩa tỉ số lượng giác của 1 góc nhọn để chứng minh rằng với góc nhọn a tùy ý ta có:
tan a=\(\dfrac{sina}{cosa}\) cot a=\(\dfrac{cosa}{sina}\) tan a . cot a =1 sin2a + cos2a= 1
cho tam giác ABC vuông tại A, đường cao AH. Gọi D,E là hình chiếu vuông góc của H trên AB,AC. Tính số đo các góc của tam giác HDE. Biết \(\dfrac{DE}{BC}\)\(=\dfrac{\sqrt{3}}{4}\)
cho góc nhọn α tuỳ chọn chứng minh rằng
a) 1+\(\tan^2\) α=1\(\dfrac{1}{\cos^2}\) α
Sử dụng định nghĩa các tỉ số lượng giác của một góc nhọn để chứng minh rằng : Với góc nhọn \(\alpha\) tùy ý, ta có :
a) \(tg\alpha=\dfrac{\sin\alpha}{\cos\alpha}\)
\(cotg\alpha=\dfrac{\cos\alpha}{\sin\alpha}\)
\(tg\alpha.cotg\alpha=1\)
b) \(\sin^2\alpha+\cos^2\alpha=1\)
Gợi ý : Sử dụng định lí Pytago
c) Biết \(tan\alpha=0,5\). Tính \(\alpha\)
với α là góc nhọn tim giá trị lớn nhất của biểu thức sinα +sin (90 0 - α )