cho x+y+z=0 tính giá trị biểu thức P=\(\dfrac{x^2}{^{yz}}\)+\(\dfrac{y^2}{xz}\)+\(\dfrac{z^2}{xy}\)
Cho x, y, z đôi một khác nhau và \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\).Tính giá trị của biểu thức D=\(\dfrac{yz}{x^2+2yz}+\dfrac{xz}{y^2+xz}+\dfrac{xy}{z^2+xy}\)
⇔xy+yz+zx=0
=yz/(x−y)(x−z)
Tương tự: xy/z^2+2xy=xy/(x−z)(y−z)
Cho x,y,z là ba số khác 0 và x+y+z=0. Tính giá trị của biểu thức:
\(\dfrac{xy}{x^2+y^2-z^2}+\dfrac{xz}{x^2+z^2-y^2}+\dfrac{yz}{y^2+z^2-x^2}\)
\(x^2+y^2-z^2=x^2+\left(y-z\right)\left(y+z\right)=x^2-x\left(y-z\right)=x\left(x-y+z\right)=x\left(-y-y\right)=-2xy\)
Tương tự \(x^2+z^2-y^2=-2xz;y^2+z^2-x^2=-2yz\)
Cộng VTV:
\(\Leftrightarrow\text{Biểu thức }=\dfrac{xy}{-2xy}+\dfrac{xz}{-2xz}+\dfrac{yz}{-2yz}=-\dfrac{1}{8}\)
Cho x,y,z khác 0 và x+y+z=0. Tính giá trị biểu thức\(\dfrac{xy}{x^2+y^2-z^2}\)+\(\dfrac{xz}{x^2+z^2-y^2}\)+\(\dfrac{yz}{y^2+z^2-x^2}\)
Mong mọi người giúp đỡ
Cho x, y, z đôi một khác nhau và \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\).Tính giá trị của biểu thức: \(\dfrac{yz}{x^2+2yz}+\dfrac{xz}{y^2+2xz}+\dfrac{xy}{z^2+2xy}\)
\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\Leftrightarrow\dfrac{xy+yz+xz}{xyz}=0\Leftrightarrow xy+yz+xz=0\Leftrightarrow yz=-xy-xz\)
Ta có \(x^2+2yz=x^2+yz-xy-xz=\left(x-y\right)\left(x-z\right)\)
Tương tự \(y^2+2xz=\left(y-x\right)\left(y-z\right);z^2-2xy=\left(z-x\right)\left(z-y\right)\)
\(A=\dfrac{yz}{x^2+2yz}+\dfrac{xz}{y^2+2xz}+\dfrac{xy}{z^2+2xy}=\dfrac{yz}{\left(x-y\right)\left(x-z\right)}+\dfrac{xz}{\left(y-z\right)\left(y-x\right)}+\dfrac{xy}{\left(z-x\right)\left(z-y\right)}\\ A=\dfrac{-yz\left(y-z\right)-xz\left(z-x\right)-xy\left(x-z\right)}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}\\ A=\dfrac{-yz\left(y-z\right)+xz\left(y-z\right)+xz\left(x-y\right)-xy\left(x-y\right)}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}\\ A=\dfrac{\left(y-z\right)\left(xz-yz\right)+\left(x-y\right)\left(xz-xy\right)}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}\\ A=\dfrac{\left(x-y\right)\left(y-z\right)\left(z-x\right)}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}=1\)
⇒yz=−xy−zx⇒yz/x^2+2yz=yz/x^2+yz−xy−zx
=yz/(x−y)(x−z)
Tương tự: xy/z^2+2xy=xy/(x−z)(y−z)
\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\Leftrightarrow xy+yz+xz=0\)
\(\Leftrightarrow yz=-xy-xz\)\(\Leftrightarrow\dfrac{yz}{x^2+2yz}=\dfrac{yz}{x^2+yz-xy-xz}=\dfrac{yz}{\left(x-y\right)\left(x-z\right)}\)
Tương tự: \(\dfrac{xz}{y^2+2xz}=\dfrac{xz}{\left(y-x\right)\left(y-z\right)}\)
\(\dfrac{xy}{z^2+2xy}=\dfrac{xy}{\left(x-z\right)\left(y-z\right)}\)
\(\Rightarrow\dfrac{yz}{x^2+2yz}+\dfrac{xz}{y^2+2xz}+\dfrac{xy}{z^2+2xy}=\dfrac{-yz\left(y-z\right)-xz\left(z-x\right)-xy\left(x-y\right)}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}=1\)
Cho x,y,z đôi một khác nhau và \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\). Tính giá trị của biểu thức: \(A=\dfrac{yz}{x^2+2yz}+\dfrac{xz}{y^2+2xz}+\dfrac{xy}{z^2+2xy}\)
\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\Leftrightarrow xy+yz+zx=0\)
\(\Rightarrow yz=-xy-zx\Rightarrow\dfrac{yz}{x^2+2yz}=\dfrac{yz}{x^2+yz-xy-zx}=\dfrac{yz}{\left(x-y\right)\left(x-z\right)}\)
Tương tự: \(\dfrac{xz}{y^2+2xz}=\dfrac{xz}{\left(y-x\right)\left(y-z\right)}\) ; \(\dfrac{xy}{z^2+2xy}=\dfrac{xy}{\left(x-z\right)\left(y-z\right)}\)
\(\Rightarrow A=\dfrac{-yz\left(y-z\right)-zx\left(z-x\right)-xy\left(x-y\right)}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}=1\)
Cho \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\)=0. Tính giá trị của biểu thức A=\(\dfrac{yz}{x^2}+\dfrac{xz}{y^2}+\dfrac{xy}{z^2}\)
Mong mọi người giúp đỡ
\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\Rightarrow xy+yz+xz=0\)
A=\(xyz\left(\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}\right)=xyz\left(\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}-\dfrac{3}{xyz}+\dfrac{3}{xyz}\right)=xyz.\dfrac{3}{xyz}=3\)
bạn tự chứng minh \(\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}-\dfrac{3}{xyz}=0\) nha
đặt \(\dfrac{1}{x}=a;\dfrac{1}{y}=b;\dfrac{1}{z}=c\)
bài toán thành \(a^3+b^3+c^3-3abc=0\) nha
Cho x, y, z đôi một khác nhau và \(\dfrac{1}{x}\)+\(\dfrac{1}{y}\)+\(\dfrac{1}{z}\) = 0
Tính giá trị của biểu thức: M = \(\dfrac{yz}{x^2+2yz}+\dfrac{xz}{y^2+2xz}+\dfrac{xy}{z^2+2xy}\)
Giúp mk giải bài này với, khó quá :((
Bài này ez thôi, làm mãi rồi.
Theo đề bài, ta có: \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\)
=>\(\dfrac{xy+yz+xz}{xyz}=0\)
=> xy+yz+zx=0
=> \(\left\{{}\begin{matrix}xy=-yz-zx\\yz=-xy-zx\\zx=-xy-yz\end{matrix}\right.\)
Ta có: x2+2yz=x2+yz-xy-zx=(x-y)(x-z)
y2+2xz=y2+xz-xy-yz=(x-y)(z-y)
z2+2xy=z2+xy-yz-xz=(x-z)(y-z)
=> \(\dfrac{yz}{\left(x-y\right)\left(x-z\right)}+\dfrac{xz}{\left(x-y\right)\left(z-y\right)}+\dfrac{xy}{\left(x-z\right)\left(y-z\right)}=\dfrac{yz\left(y-z\right)-xz\left(x-z\right)+xy\left(x-y\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}=\dfrac{\left(x-y\right)\left(x-z\right)\left(y-z\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}=1\)
1.a.rút gọn biểu thức M = \(\dfrac{\text{1}}{\text{(x - y)(z² + yz - x² - xy)}}-\dfrac{\text{1}}{\text{(y - z)(x² + xz - y² -yz)}}+\dfrac{\text{1}}{\text{(z - x)(y² + xy - z² - xz)}}\)
b. tính giá trị của M tại x = y = z = 2015
\(\dfrac{1}{\left(x-y\right)\left(z^2+yz-x^2-xz\right)}=\dfrac{1}{\left(x-y\right)\left[\left(z-x\right)\left(z+x\right)+y\left(z-x\right)\right]}=\dfrac{1}{\left(z-x\right)\left(x-y\right)\left(x+y+z\right)}\)
Tương tự: \(\dfrac{1}{\left(y-z\right)\left(x^2+xz-y^2-yz\right)}=\dfrac{1}{\left(y-z\right)\left(x-y\right)\left(x+y+z\right)}\)
\(\dfrac{1}{\left(z-x\right)\left(y^2+xy-z^2-xz\right)}=\dfrac{1}{\left(z-x\right)\left(y-z\right)\left(x+y+z\right)}\)
\(\Rightarrow M=\dfrac{y-z-z+x-x+y}{\left(x-y\right)\left(y-z\right)\left(z-x\right)\left(x+y+z\right)}\\ M=\dfrac{2}{\left(x-y\right)\left(z-x\right)\left(x+y+z\right)}\)
\(a,\) Bổ sung điều kiện: \(x\ne y\ne z\)
\(b,\) Đề bài ko thỏa mãn điều kiện nên không tính đc M
Cho x , y , z là các số dương và xy + yz + xz = 3 . Tìm giá trị nhỏ nhất của biểu thức :A=\(\dfrac{x^2}{z\left(z^2+x^2\right)}+\dfrac{y^2}{x\left(x^2+y^2\right)}+\dfrac{z^2}{y\left(y^2+z^2\right)}\)
Cho \(x,y,z\in Q\) sao cho \(xyz=1\)
Tính giá trị của biểu thức \(A=\dfrac{1}{xy+x+1}+\dfrac{1}{yz+y+1}+\dfrac{1}{xz+z+1}\) ?
\(A=\dfrac{1}{xy+x+1}+\dfrac{1}{yz+y+1}+\dfrac{1}{xz+z+1}\)
\(A=\dfrac{1}{xy+x+xyz}+\dfrac{1}{yz+y+1}+\dfrac{1}{xz+z+1}\)
\(A=\dfrac{1}{x\left(y+1+yz\right)}+\dfrac{1}{yz+y+1}+\dfrac{1}{xz+z+1}\)
\(A=\dfrac{xyz}{x\left(y+1+yz\right)}+\dfrac{1}{yz+y+1}+\dfrac{1}{xz+z+1}\)
\(A=\dfrac{yz}{y+1+yz}+\dfrac{1}{y+yz+1}+\dfrac{1}{xz+z+1}\)
\(A=\dfrac{yz+1}{y+1+yz}+\dfrac{1}{xz+z+1}\)
\(A=\dfrac{yz+xyz}{y+xyz+yz}+\dfrac{1}{xz+z+1}\)
\(A=\dfrac{y\left(z+xz\right)}{y\left(1+xz+z\right)}+\dfrac{1}{xz+z+1}\)
\(A=\dfrac{z+xz+1}{xz+z+1}\)
\(A=1\)
\(A=\dfrac{1}{xy+x+1}+\dfrac{1}{yz+y+1}+\dfrac{1}{xz+z+1}\)⇔\(A=\dfrac{z}{1+xz+z}+\dfrac{xz}{z+1+xz}+\dfrac{1}{xz+z+1}\)(vì xyz=1)
⇔\(A=\dfrac{z+xz+1}{xz+z+1}\)⇔\(A=1\)
Xong rồi nè bn ơi
\(\dfrac{1}{xy+x+1}+\dfrac{1}{yz+y+1}+\dfrac{1}{xz+z+1}\)
\(=\dfrac{1}{\dfrac{1}{z}+\dfrac{1}{yz}+1}+\dfrac{1}{yz+y+1}+\dfrac{1}{\dfrac{1}{y}+z+1}\)
\(=\dfrac{1}{\dfrac{y+1+yz}{yz}}+\dfrac{1}{yz+y+1}+\dfrac{1}{\dfrac{1+zy+y}{y}}\)
\(=\dfrac{yz}{y+1+yz}+\dfrac{1}{yz+y+1}+\dfrac{y}{1+zy+y}=\dfrac{y+yz+1}{y+yz+1}=1\)