\(A=\dfrac{1}{xy+x+1}+\dfrac{1}{yz+y+1}+\dfrac{1}{xz+z+1}\)
\(A=\dfrac{1}{xy+x+xyz}+\dfrac{1}{yz+y+1}+\dfrac{1}{xz+z+1}\)
\(A=\dfrac{1}{x\left(y+1+yz\right)}+\dfrac{1}{yz+y+1}+\dfrac{1}{xz+z+1}\)
\(A=\dfrac{xyz}{x\left(y+1+yz\right)}+\dfrac{1}{yz+y+1}+\dfrac{1}{xz+z+1}\)
\(A=\dfrac{yz}{y+1+yz}+\dfrac{1}{y+yz+1}+\dfrac{1}{xz+z+1}\)
\(A=\dfrac{yz+1}{y+1+yz}+\dfrac{1}{xz+z+1}\)
\(A=\dfrac{yz+xyz}{y+xyz+yz}+\dfrac{1}{xz+z+1}\)
\(A=\dfrac{y\left(z+xz\right)}{y\left(1+xz+z\right)}+\dfrac{1}{xz+z+1}\)
\(A=\dfrac{z+xz+1}{xz+z+1}\)
\(A=1\)
\(A=\dfrac{1}{xy+x+1}+\dfrac{1}{yz+y+1}+\dfrac{1}{xz+z+1}\)⇔\(A=\dfrac{z}{1+xz+z}+\dfrac{xz}{z+1+xz}+\dfrac{1}{xz+z+1}\)(vì xyz=1)
⇔\(A=\dfrac{z+xz+1}{xz+z+1}\)⇔\(A=1\)
Xong rồi nè bn ơi
\(\dfrac{1}{xy+x+1}+\dfrac{1}{yz+y+1}+\dfrac{1}{xz+z+1}\)
\(=\dfrac{1}{\dfrac{1}{z}+\dfrac{1}{yz}+1}+\dfrac{1}{yz+y+1}+\dfrac{1}{\dfrac{1}{y}+z+1}\)
\(=\dfrac{1}{\dfrac{y+1+yz}{yz}}+\dfrac{1}{yz+y+1}+\dfrac{1}{\dfrac{1+zy+y}{y}}\)
\(=\dfrac{yz}{y+1+yz}+\dfrac{1}{yz+y+1}+\dfrac{y}{1+zy+y}=\dfrac{y+yz+1}{y+yz+1}=1\)