Cho \(x,y,z\in Q\) sao cho \(xyz=1\)
Tính giá trị của biểu thức \(A=\dfrac{1}{xy+x+1}+\dfrac{1}{yz+y+1}+\dfrac{1}{xz+z+1}\) ?
Cho xyz= 1. Tính GTBT A = \(\dfrac{x}{xy+x+1}\)+ \(\dfrac{y}{yz+y+1}\)+ \(\dfrac{z}{xz+z+1}\)
Cho \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\)=0. Tính giá trị của biểu thức A=\(\dfrac{yz}{x^2}+\dfrac{xz}{y^2}+\dfrac{xy}{z^2}\)
Mong mọi người giúp đỡ
Cho xyz = 1, tính P= \(\dfrac{x+2xy+1}{x+xy+xz+1}+\dfrac{y+2yz+1}{y+yz+ỹx+1}+\dfrac{z+2zx+1}{z+zx+zy+1}\)
\(\frac{x}{-xy+x+1}-\frac{y}{yz-y+1}+\frac{z}{xz+z-1}với\)
Với xyz=1 và các mẫu thức đều khác 0
Tính tổng
Cho x,y,z là ba số khác 0 và x+y+z=0. Tính giá trị của biểu thức:
\(\dfrac{xy}{x^2+y^2-z^2}+\dfrac{xz}{x^2+z^2-y^2}+\dfrac{yz}{y^2+z^2-x^2}\)
Cho x,y,z khác 0 và x+y+z=0. Tính giá trị biểu thức\(\dfrac{xy}{x^2+y^2-z^2}\)+\(\dfrac{xz}{x^2+z^2-y^2}\)+\(\dfrac{yz}{y^2+z^2-x^2}\)
Mong mọi người giúp đỡ
Cho x + y + z = 0; xyz ≠ 0 . Tính \(A=\dfrac{x^2}{yz}+\dfrac{y^2}{xz}+\dfrac{z^2}{xy}\)
Cho \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\)
Tính \(A=\dfrac{yz}{x^2}+\dfrac{xz}{y^2}+\dfrac{xy}{z^2}\)