Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Văn Thị Kim Thoa
Xem chi tiết
mình tên gì :)?
Xem chi tiết
Nguyễn Hoàng Minh
17 tháng 9 2021 lúc 21:19

\(a,\) Áp dụng HTL tam giác

\(\left\{{}\begin{matrix}AH^2=BH\cdot HC\\AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}CH=\dfrac{AH^2}{BH}=\dfrac{36}{4,5}=8\left(cm\right)\\AB=\sqrt{4,5\left(4,5+8\right)}=\sqrt{4,5\cdot12,5}=7,5\left(cm\right)\\AC=\sqrt{8\cdot12,5}=10\left(cm\right)\end{matrix}\right.\)

và \(BC=12,5\left(cm\right)\)

\(b,\) Áp dụng HTL tam giác

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\\AH^2=CH\cdot BH\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}BC=\dfrac{AB^2}{BH}=\dfrac{36}{3}=12\left(cm\right)\\CH=\dfrac{AC^2}{BC}=\dfrac{BC^2-AB^2}{12}=\dfrac{6\sqrt{3}}{12}=\dfrac{\sqrt{3}}{2}\left(cm\right)\\AH=3\cdot\dfrac{\sqrt{3}}{2}=\dfrac{3\sqrt{3}}{2}\left(cm\right)\end{matrix}\right.\)

Trương Thị Trang Thư
Xem chi tiết
๖ۣۜDũ๖ۣۜN๖ۣۜG
21 tháng 6 2021 lúc 15:05

Xét tam giác ABH vuông tại H, ta có:

AH2 + BH2 = AB2

=> AH2 = 62 - 32 

=> AH = \(3\sqrt{3}\) (cm)

Có \(\widehat{BAH}=\widehat{BCA}\) (cùng phụ \(\widehat{HAC}\))

Xét \(\Delta CAH\) và \(\Delta ABH\) có:

+  \(\widehat{BCA}=\widehat{BAH}\) 

+ \(\widehat{AHC}=\widehat{BAC}\left(=90^o\right)\)

=>  \(\Delta CAH\) \(\sim\) \(\Delta ABH\) (g-g)

=> \(\dfrac{AC}{AH}=\dfrac{AB}{BH}\) => AC = \(6\sqrt{3}\) (cm)

Xét tam giác ABC vuông tại A có AH là đường cao

=> AB2 = BH.BC

=> 62 = 3.BC

=> BC = 12 (cm)

=> CH = 9 (cm)

 

kietdvjjj
Xem chi tiết
An Thy
16 tháng 7 2021 lúc 11:02

tam giác ABC vuông tại A nên áp dụng Py-ta-go 

\(\Rightarrow BC^2=AB^2+AC^2=6^2+8^2=100\Rightarrow BC=10\left(cm\right)\)

tam giác ABC vuông tại A có đường cao AH nên áp dụng hệ thức lượng

\(\Rightarrow AB^2=BH.BC\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{6^2}{10}=3,6\left(cm\right)\)

tam giác ABC vuông tại A có đường cao AH nên áp dụng hệ thức lượng

\(\Rightarrow AC^2=CH.BC\Rightarrow CH=\dfrac{AC^2}{BC}=\dfrac{8^2}{10}=6,4\left(cm\right)\)

tam giác ABC vuông tại A có đường cao AH nên áp dụng hệ thức lượng

\(\Rightarrow AH.BC=AB.AC\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{6.8}{10}=4,8\left(cm\right)\)

b) Kẻ HE,HF vuông góc với AB,AC chớ,chứ ko có điểm I

Vì \(\angle HEA=\angle HFA=\angle EAF=90\Rightarrow AEHF\) là hình chữ nhật

\(\Rightarrow EF=AH\)

tam giác AHB vuông tại H có đường cao HE nên áp dụng hệ thức lượng

\(\Rightarrow EA.EB=EH^2\)

tam giác AHB vuông tại H có đường cao HE nên áp dụng hệ thức lượng

\(\Rightarrow FA.FC=HF^2\Rightarrow EA.EB+FA.FC=EH^2+FH^2=EF^2=AH^2\)

tam giác ABC vuông tại A có đường cao AH nên áp dụng hệ thức lượng

\(\Rightarrow AH^2=HB.HC\Rightarrow HB.HC=EA.EB+FA.FC\)

 

Nguyễn Văn Đông
Xem chi tiết
nthv_.
28 tháng 9 2021 lúc 15:52

nthv_.
28 tháng 9 2021 lúc 15:53

undefined

Nguyễn Hoàng Minh
28 tháng 9 2021 lúc 15:54

\(a,\) Áp dụng HTL:

\(AH^2=BH\cdot HC\Rightarrow HC=\dfrac{AH^2}{BH}=10,24\left(cm\right)\\ BC=BH+CH=35,24\left(cm\right)\\ \left\{{}\begin{matrix}AB^2=HB\cdot BC=881\\AC^2=HC\cdot BC=360,8576\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}AB=\sqrt{881}\left(cm\right)\\AC\approx19\left(cm\right)\end{matrix}\right.\)

\(b,\) Áp dụng HTL:

\(AB^2=BH\cdot BC\Rightarrow BC=\dfrac{AB^2}{BH}=24\left(cm\right)\\ HC=BC-BH=18\left(cm\right)\\ \left\{{}\begin{matrix}AH^2=BH\cdot HC=108\\AC^2=CH\cdot BC=432\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}AH=6\sqrt{3}\left(cm\right)\\AC=12\sqrt{3}\left(cm\right)\end{matrix}\right.\)

\(c,\) Áp dụng HTL:

\(BC=BH+HC=13\left(cm\right)\\ \left\{{}\begin{matrix}AB^2=BH\cdot BC=117\\AC^2=CH\cdot BC=52\\AH^2=BH\cdot CH=36\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}AB=3\sqrt{13}\left(cm\right)\\AC=2\sqrt{13}\left(cm\right)\\AH=6\left(cm\right)\end{matrix}\right.\)

 

Bruh
Xem chi tiết
missing you =
10 tháng 8 2021 lúc 17:14

a,

pytago trong tam giác ABH

\(=>AB=\sqrt{AH^2+BH^2}=\sqrt{6^2+4,5^2}=7,5cm\)

dễ dàng chứng minh \(\Delta AHB\sim\Delta CAB\left(g.g\right)=>\dfrac{AH}{AC}=\dfrac{HB}{AB}=>AC=10cm\)

pytago cho tam giác ABC

\(=>BC=\sqrt{AB^2+AC^2}=12,5cm\)

\(=>HC=BC-HB=8cm\)

b, pytago cho tam giác AHB

\(=>AH=\sqrt{AB^2-BH^2}=3\sqrt{3}cm\)

rồi tính AC , CH làm tương tự bài trên

Lan Ngọc
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 7 2023 lúc 14:49

\(AH=\sqrt{6^2-3^2}=3\sqrt{3}\left(cm\right)\)

BC=AB^2/BH=12cm

\(AC=\sqrt{12^2-6^2}=6\sqrt{3}\left(cm\right)\)

CH=BC-BH=9cm

Rhider
Xem chi tiết
Thanh Hoàng Thanh
12 tháng 1 2022 lúc 20:45

undefined

Tandz3508
Xem chi tiết
SonGoku
13 tháng 9 2023 lúc 17:32

Áp dụng định lý Pytago vào tam giác ABC(góc A=90) có:

BC2=AB2+AC2

<=>BC2=32+42

<=>BC2=25

<=>BC=5(cm)

Áp dụng HTL vào tam giác ABC vuông tại A có đường cao AH được:

AB.AC=BC.AH

<=>3.4=5.AH

<=> AH=\(\dfrac{3.4}{5}\)

<=>AH=2,4(cm)

Áp dụng định lý Pytago vào tam giác AHB vuông tại H có:

AB2=AH2+BH2

<=>BH2=32-2,42

<=>BH2=3,24

<=>BH=1,8(cm)
Ta có:BC=BH+CH

=>CH=BC-BH=5-1,8=3,2(cm)

Vậy BC=5cm;AH=2,4cm;BH=1,8cm;CH=3,2cm

 

Nguyễn Lê Phước Thịnh
13 tháng 9 2023 lúc 17:36

loading...