Xét tam giác ABH vuông tại H, ta có:
AH2 + BH2 = AB2
=> AH2 = 62 - 32
=> AH = \(3\sqrt{3}\) (cm)
Có \(\widehat{BAH}=\widehat{BCA}\) (cùng phụ \(\widehat{HAC}\))
Xét \(\Delta CAH\) và \(\Delta ABH\) có:
+ \(\widehat{BCA}=\widehat{BAH}\)
+ \(\widehat{AHC}=\widehat{BAC}\left(=90^o\right)\)
=> \(\Delta CAH\) \(\sim\) \(\Delta ABH\) (g-g)
=> \(\dfrac{AC}{AH}=\dfrac{AB}{BH}\) => AC = \(6\sqrt{3}\) (cm)
Xét tam giác ABC vuông tại A có AH là đường cao
=> AB2 = BH.BC
=> 62 = 3.BC
=> BC = 12 (cm)
=> CH = 9 (cm)