\(x^2-3x\sqrt{y}+2y\) với x=\(\dfrac{1}{\sqrt{5}-2}\) và y=\(\dfrac{1}{9+4\sqrt{5}}\)
Tính giá trị của biểu thức: \(A=x^2-3x\sqrt{y}+2y\), khi \(x=\dfrac{1}{\sqrt{5}-2};y=\dfrac{1}{9+4\sqrt{5}}\)
Có :
\(x=\dfrac{1}{\sqrt{5}-2}\Rightarrow x^2=\dfrac{1}{\left(\sqrt{5}-2\right)^2}=\dfrac{1}{5-4\sqrt{5}+4}\\ =\dfrac{1}{9-4\sqrt{5}}\\ y=\dfrac{1}{5+4\sqrt{5}}=\dfrac{1}{5+4\sqrt{5}+2}=\dfrac{1}{\left(\sqrt{5}+2\right)^2}\\ \Rightarrow\sqrt{y}=\sqrt{\dfrac{1}{\left(\sqrt{5}+2\right)^2}}=\dfrac{1}{\sqrt{5}+2}\)
\(\Rightarrow A=\dfrac{1}{9-4\sqrt{5}}-3.\dfrac{1}{\sqrt{5}-2}.\dfrac{1}{\sqrt{5}+2}+\dfrac{2}{9+4\sqrt{5}}\\ =\dfrac{1}{9-4\sqrt{5}}-\dfrac{3}{5-4}+\dfrac{2}{9+4\sqrt{5}}\\ =\dfrac{9+\sqrt{5}+2\left(9-4\sqrt{5}\right)}{\left(9-4\sqrt{5}\right)\left(9+4\sqrt{5}\right)}-3=\dfrac{27-4\sqrt{5}}{81-80-3}\\ =27-4\sqrt{5}-3=24-4\sqrt{5}\)
1.Giải hệ phương trình:
\(\left\{{}\begin{matrix}2x+y=5\\3x-2y=11\end{matrix}\right.\)
2.Rút gọn biểu thức:
B=\(\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}+\dfrac{2\sqrt{x}}{\sqrt{x}+2}+\dfrac{5\sqrt{x}+2}{4-x}\right):\dfrac{1}{\sqrt{x}+2}\)với x>0;x\(\ne\)9
1) Ta có: \(\left\{{}\begin{matrix}2x+y=5\\3x-2y=11\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}6x+3y=15\\6x-4y=22\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}7y=-7\\2x+y=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=-1\\2x=5-y=5-\left(-1\right)=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=-1\end{matrix}\right.\)
2) Ta có: \(B=\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}+\dfrac{2\sqrt{x}}{\sqrt{x}+2}+\dfrac{5\sqrt{x}+2}{4-x}\right):\dfrac{1}{\sqrt{x}+2}\)
\(=\dfrac{x+3\sqrt{x}+2+2\sqrt{x}\left(\sqrt{x}-2\right)-5\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}:\dfrac{1}{\sqrt{x}+2}\)
\(=\dfrac{x-2\sqrt{x}+2x-4\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\cdot\dfrac{\sqrt{x}+2}{1}\)
\(=\dfrac{3x-6\sqrt{x}}{\sqrt{x}-2}\)
\(=3\sqrt{x}\)
giải giúp mik bt này vs mn!
1)\(\left\{{}\begin{matrix}2x^2+y^2+x=3\left(xy+1\right)+2y\\\dfrac{2}{3+\sqrt{2x-y}}+\dfrac{2}{3+\sqrt{4-5x}}=\dfrac{9}{2x-y+9}\end{matrix}\right.\)
2)\(\left\{{}\begin{matrix}\left(x+3y+1\right)\sqrt{2xy+2y}=y\left(3x+4y+3\right)\\\left(\sqrt{x+3}-\sqrt{2y-2}\right)\left(x-3+\sqrt{x^2+x+2y-4}\right)=4\end{matrix}\right.\)
3)\(\left\{{}\begin{matrix}x-\dfrac{1}{x}=y-\dfrac{1}{y}\\2y=x^3+1\end{matrix}\right.\)
4)\(\left\{{}\begin{matrix}\sqrt{2x-3}=\left(y^2+2011\right)\left(5-y\right)+\sqrt{y}\\y\left(y-x+2\right)=3x+3\end{matrix}\right.\)
5)\(\left\{{}\begin{matrix}x^3+2x^2=x^2y+2xy\\2\sqrt{x^2-2y-1}+\sqrt[3]{y^3-14=x-2}\end{matrix}\right.\)
5,\(hpt\Leftrightarrow\left\{{}\begin{matrix}x\left(x+y\right)\left(x+2\right)=0\\2\sqrt{x^2-2y-1}+\sqrt[3]{y^3-14}=x-2\end{matrix}\right.\)
Thay từng TH rồi làm nha bạn
3,\(hpt\Leftrightarrow\left\{{}\begin{matrix}x-y=\frac{1}{x}-\frac{1}{y}=\frac{y-x}{xy}\\2y=x^3+1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-y\right)\left(1+\frac{1}{xy}\right)=0\\2y=x^3+1\end{matrix}\right.\)
thay nhá
Bài 1:ĐKXĐ: \(2x\ge y;4\ge5x;2x-y+9\ge0\)\(\Rightarrow2x\ge y;x\le\frac{4}{5}\Rightarrow y\le\frac{8}{5}\)
PT(1) \(\Leftrightarrow\left(x-y-1\right)\left(2x-y+3\right)=0\)
+) Với y = x - 1 thay vào pt (2):
\(\frac{2}{3+\sqrt{x+1}}+\frac{2}{3+\sqrt{4-5x}}=\frac{9}{x+10}\) (ĐK: \(-1\le x\le\frac{4}{5}\))
Anh quy đồng lên đê, chắc cần vài con trâu đó:))
+) Với y = 2x + 3...
Đạo hàm
1, \(y= (x+1)\sqrt{x-2}\)
2, \(y=\dfrac{1}{\sqrt{x^2+4x+5}}\)
3, \(y=\dfrac{\sqrt{x+1}}{x-1}\)
4, \(y=\dfrac{x+1}{\sqrt{x^2+1}}\)
5, \(y=\dfrac{1}{\sqrt{4-3x^2}}\)
1. \(y'=\sqrt{x-2}+\dfrac{x+1}{2\sqrt{x-2}}\)
2. \(y'=-\dfrac{\dfrac{1}{2\sqrt{x^2+4x+5}}\cdot\left(x^2+4x+5\right)'}{x^2+4x+5}=-\dfrac{x+2}{\sqrt{\left(x^2+4x+5\right)^3}}\)
3. \(y'=\dfrac{\dfrac{x-1}{2\sqrt{x+1}}-\sqrt{x+1}}{\left(x-1\right)^2}=\dfrac{-x-3}{\left(x-1\right)^2\sqrt{x+1}}\)
4. \(y'=\dfrac{\sqrt{x^2+1}-\dfrac{x+1}{2\sqrt{x^2+1}}\cdot\left(x^2+1\right)'}{x^2+1}=\dfrac{\dfrac{2\left(x^2+1\right)-\left(x+1\right)\cdot2x}{2\sqrt{x^2+1}}}{x^2+1}=\dfrac{1-x}{\sqrt{\left(x^2+1\right)^3}}\)
5. \(y'=-\dfrac{\dfrac{\left(4-3x^2\right)'}{2\sqrt{4-3x^2}}}{4-3x^2}=\dfrac{3x}{\sqrt{\left(4-3x^2\right)^3}}\)
1. \(y'=\sqrt{x-2}+\dfrac{x+1}{2\sqrt{x-2}}=\dfrac{3x-3}{2\sqrt{x-2}}\)
2. \(y'=-\dfrac{\left(\sqrt{x^2+4x+5}\right)'}{x^2+4x+5}=-\dfrac{x+2}{\left(x^2+4x+5\right)\sqrt{x^2+4x+5}}\)
3. \(y'=\dfrac{\dfrac{\left(x-1\right)}{2\sqrt{x+1}}-\sqrt{x+1}}{\left(x-1\right)^2}=\dfrac{-x-3}{2\left(x-1\right)^2\sqrt{x+1}}\)
4. \(y'=\dfrac{\sqrt{x^2+1}-\dfrac{x\left(x+1\right)}{\sqrt{x^2+1}}}{x^2+1}=\dfrac{1-x}{\left(x^2+1\right)\sqrt{x^2+1}}\)
5. \(y'=\dfrac{\left(\sqrt{4-3x^2}\right)'}{3x^2-4}=\dfrac{-3x}{\left(3x^2-4\right)\sqrt{4-3x^2}}\)
a,-12:(3/4-5/6)^2
,b,10.\(\sqrt{0.01}.\sqrt{\dfrac{16}{9}+3\sqrt{49}-\dfrac{1}{6}\sqrt{4}}\)
c,x/6=y/3=z/2 và x-2y+4z=8
d,|1/4+x|-1/3=2/5
bài 1: giải các hệ phương trình
1)\(\dfrac{1}{x}\)+\(\dfrac{1}{y}\)=\(\dfrac{1}{2}\)
x+y=9
2) \(\dfrac{2x+1}{4}-\dfrac{y-2}{3}=\dfrac{1}{12}\)
\(\dfrac{x+5}{2}-\dfrac{y+7}{3}=-4\)
3)\(2|x|-y=3\)
\(|x|+y=3\)
4)\(2\left(x+y\right)+\sqrt{x+1}=4\)
\(\left(x+y\right)-3\sqrt{x+1}=-5\)
5) \(\dfrac{7}{2x+y}+\dfrac{4}{2x-y}=74\)
\(\dfrac{3}{2x+y}+\dfrac{2}{2x-y}=32\)
6)\(\dfrac{1}{x}+\dfrac{3}{2y+1}=2\)
\(\dfrac{2}{x}+\dfrac{4}{2y+1}=2\)
7) \(\dfrac{1}{x}+\dfrac{1}{y}=2\)
\(\dfrac{3}{x}-\dfrac{1}{y}=2\)
8)\(\dfrac{1}{x+2}+\dfrac{3}{2y-1}=4\)
\(\dfrac{4}{x+2}-\dfrac{1}{2y-1}=3\)
9)\(\dfrac{4}{x+y} +\dfrac{1}{y-1}=5\)
\(\dfrac{1}{x+y}-\dfrac{2}{y-1}=-1\)
10)\(\dfrac{7}{\sqrt{2x+3}}-\dfrac{4}{\sqrt{3}-y}=\dfrac{5}{3}\)
\(\dfrac{5}{\sqrt{2x+3}}+\dfrac{3}{\sqrt{3-y}}=\dfrac{13}{6}\)
11)\(\dfrac{3x}{x-1}-\dfrac{2}{y+2}=4\)
\(\dfrac{2x}{x-1}+\dfrac{1}{y+2}=5\)
12) \(\dfrac{7}{\sqrt{x}-7}-\dfrac{4}{\sqrt{y}+6}=\dfrac{5}{3}\)
\(\dfrac{5}{\sqrt{x}-7}+\dfrac{3}{\sqrt{y}+6}2\dfrac{1}{6}\)
13) \(3\sqrt{x-1}+2\sqrt{y}=13\)
\(2\sqrt{x-1}-\sqrt{y}=4\)
14) 6x + 6y = 5xy
\(\dfrac{4}{x}-\dfrac{3}{y}=1\)
mọi người giúp mk với
câu 6 sai nha
sửa : \(\dfrac{1}{x}+\dfrac{3}{2y+1}=2\)
\(\dfrac{2}{x}+\dfrac{4}{2y+1}=3\)
Giải các hệ phương trình sau bằng cách đặt ẩn số phụ:
1) \(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{12}\\\dfrac{8}{x}+\dfrac{15}{y}=1\end{matrix}\right.\)
2) \(\left\{{}\begin{matrix}\dfrac{2}{x+2y}+\dfrac{1}{y+2x}=3\\\dfrac{4}{x+2y}-\dfrac{3}{y+2x}=1\end{matrix}\right.\)
3) \(\left\{{}\begin{matrix}\dfrac{3x}{x+1}-\dfrac{2}{y+4}=4\\\dfrac{2x}{x+1}-\dfrac{5}{y+4}=9\end{matrix}\right.\)
4) \(\left\{{}\begin{matrix}x^2+y^2=13\\3x^2-2y^2=-6\end{matrix}\right.\)
5) \(\left\{{}\begin{matrix}3\sqrt{x}+2\sqrt{y}=16\\2\sqrt{x}-3\sqrt{y}=-11\end{matrix}\right.\)
6) \(\left\{{}\begin{matrix}|x|+4|y|=18\\3|x|+|y|=10\end{matrix}\right.\)
GIẢI GIÚP MÌNH VỚI M.N
hỏi trước tí, bạn biết giải cái hệ này chứ?
\(\left\{{}\begin{matrix}2x+y=3\\2x-3y=1\end{matrix}\right.\)
ba cái đồ êu!!
câu số 6 (con số của quỷ sa tăng :v)
đặt \(\left\{{}\begin{matrix}a=\left|x\right|\\b=\left|y\right|\end{matrix}\right.\) (a,b >/ 0)
hpt trở thành : \(\left\{{}\begin{matrix}a+4b=18\\3a+b=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=4\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\left|x\right|=2\\\left|y\right|=4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\\\left[{}\begin{matrix}y=4\\y=-4\end{matrix}\right.\end{matrix}\right.\)
Vậy hpt có các ng (x;y) là: (có 4 nghiệm tự kết luận)
1, \(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{12}\\\dfrac{8}{x}+\dfrac{15}{y}=1\end{matrix}\right.\) (I) (ĐKXĐ: x, y \(\ne\)0)
Đặt \(\dfrac{1}{x}=a\) ; \(\dfrac{1}{y}=b\)
Hệ pt (I) trở thành :
\(\left\{{}\begin{matrix}a+b=\dfrac{1}{12}\\8a+15b=1\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}8a+8b=\dfrac{2}{3}\\8a+15b=1\end{matrix}\right.\) \(\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}-7b=\dfrac{-1}{3}\\a+b=\dfrac{1}{12}\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}b=\dfrac{1}{21}\\a+\dfrac{1}{21}=\dfrac{1}{12}\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}b=\dfrac{1}{21}\left(tm\right)\\a=\dfrac{1}{28}\left(tm\right)\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}=\dfrac{1}{28}\\\dfrac{1}{y}=\dfrac{1}{21}\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=28\left(tm\right)\\y=21\left(tm\right)\end{matrix}\right.\)
Giải hệ pt
a) \(\left\{{}\begin{matrix}x+\dfrac{y}{\sqrt{1+x^2}+x}+y^2=0\\\dfrac{x^2}{y^2}+2\sqrt{x^2+1}+y^2=3\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}\sqrt{x^2+4}+\sqrt{y^2+2y-4}=4\\\sqrt{x^2+9}+y=5\end{matrix}\right.\)
Giải hệ phương trình sau bằng phương ơhasp đặt ẩn phụ :
a) \(\dfrac{2}{x+2y}+\dfrac{1}{y+2x}=3\)
\(\dfrac{4}{x+2y}-\dfrac{3}{y+2x}=1\)
b)\(\dfrac{3x}{x+1}-\dfrac{2}{y+4}=4\)
\(\dfrac{2x}{x+1}-\dfrac{5}{y+4}=9\)
c)x2+y2=13
3x2-2y2= -6
d) 3\(\sqrt{x}\) +2\(\sqrt{y}\) = 16
2\(\sqrt{x}\) - 2\(\sqrt{y}\) = -11
c: =>3x^2+3y^2=39 và 3x^2-2y^2=-6
=>5y^2=45 và x^2=13-y^2
=>y^2=9 và x^2=4
=>\(\left\{{}\begin{matrix}x\in\left\{2;-2\right\}\\y\in\left\{3;-3\right\}\end{matrix}\right.\)
d: \(\Leftrightarrow\left\{{}\begin{matrix}5\sqrt{x}=5\\\sqrt{x}-\sqrt{y}=-\dfrac{11}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\\sqrt{y}=1+\dfrac{11}{2}=\dfrac{13}{2}\end{matrix}\right.\)
=>x=1 và y=169/4
b: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3x+3-3}{x+1}-\dfrac{2}{y+4}=4\\\dfrac{2x+2-2}{x+1}-\dfrac{5}{y+4}=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-\dfrac{3}{x+1}-\dfrac{2}{y+4}=4-3=1\\-\dfrac{2}{x+1}-\dfrac{5}{y+4}=9-2=7\end{matrix}\right.\)
=>x+1=11/9 và y+4=-11/19
=>x=2/9 và y=-87/19