Bài 5: Giải bài toán bằng cách lập hệ phương trình

IQ VÔ CỰC

Bình luận (0)

a) Gọi 2 số đó là x và y. (0<x,y<33)

Tổng 2 số là 33: x+y=33 (1)

Tích 2 số là 270: x.y=270 (2)

Từ (1),(2) ta có hpt: 

\(\left\{{}\begin{matrix}x+y=33\\x.y=270\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=33-y\\\left(33-y\right).y=270\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=33-y\\-y^2+33y-270=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=33-y\\\left[{}\begin{matrix}y=18\\y=15\end{matrix}\right.\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}y=18\\x=33-18=15\end{matrix}\right.\\\left\{{}\begin{matrix}y=15\\x=33-15=18\end{matrix}\right.\end{matrix}\right.\)

Vậy: Hai số cần tìm là 18 và 15.

Bình luận (0)
Bò già thông thái.
Hôm kia lúc 11:49

Đổi: \(1h20p=\dfrac{4}{3}h\)

Gọi \(a,b\left(giờ\right)\) là thời gian làm một mình xong việc của hai người \(\left(a,b>0\right)\)

\(\Rightarrow\) Trong \(1h\) người \(1\) làm đc \(\dfrac{1}{a}\) việc.

\(\Rightarrow\) Trong \(1h\) người \(2\) làm đc \(\dfrac{1}{b}\) việc

Nếu hai người cùng làm một lúc thì sau \(\dfrac{4}{3}h\)  là xong nên ta có phương trình: 

\(\dfrac{4a}{3}+\dfrac{4b}{3}=1\)

Lại có:  Người \(1\) làm trong \(\dfrac{1}{6}h\) và người \(2\) làm trong \(\dfrac{1}{5}\) giờ thì được \(\dfrac{1}{15}\) việc nên ta có phương trình:\(\dfrac{a}{6}+\dfrac{b}{5}=\dfrac{2}{15}\left(2\right)\)

Từ: \(\left(1\right)+\left(2\right)\) ta có hệ:

\(\left\{{}\begin{matrix}\dfrac{4a}{3}+\dfrac{4b}{3}=1\\\dfrac{a}{6}+\dfrac{b}{5}=\dfrac{2}{15}\end{matrix}\right.\)

\(\Leftrightarrow\) Tự giải hệ ta được nghiệm:

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}a=2\\b=4\end{matrix}\right.\) \(\left(tm\right)\)

Vậy nếu làm một mình thì người một làm trong \(2h\) và người hai làm trong \(4h\)

Bình luận (0)

Easy

Bình luận (0)
SC__@
24 tháng 2 lúc 1:37

BGọi số học sinh lớp 9A, 9B lần lượt là x,y (học sinh)

ĐK:x,y \(\in\)N*; y > 8; x < y

Do tập thể lớp 9A, 9B thu gom giấy vụn bán mỗi kg giấy vụn 3000 đồng, thu được tổng số tiền là 648000 đồng và mỗi em thu gom 3 kg giấy vụn nên ta có pt:

  (3x + 3y).3000 = 648000 => x + y= 72  (1)

Mà lớp 9B nhiều hơn lớp 9A là 24 kg giấy vụn nên ta có pt:

3y - 3x = 24 => y - x = 8 (2)

Từ (1) và (2) ta có hpt:

\(\left\{{}\begin{matrix}x+y=72\\y-x=8\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}2y=80\\x=y-8\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}y=40\\x=32\end{matrix}\right.\)

Vậy số hs lớp 9A, 9B lần lượt là 32; 40 (học sinh)

Bình luận (1)
Nguyễn Thị Thuỳ Linh
23 tháng 2 lúc 20:45

Gọi số chiếc xe Wave là x (0 < x < 28, x ∈ N*)

Gọi số chiếc xe SH là y (0 < y < 28, y ∈ N*)Vì có tổng cộng 28 chiếc xe nên ta có phương trình: x + y = 28 (1)Vì nếu chủ cửa hàng bán hết 28 chiếc xe sẽ có 828 triệu đồng nên ta có phương trình:15x + 117y = 828 (2)Kết hợp hai phương trình (1) và (2), ta có hệ phương trình: x + y = 28                                                                                               15x + 117y = 828Giải hệ trên ta được: x = 24 (TM), y = 4 (TM).Vậy cửa hàng có 24 chiếc xe Wave, có 4 chiếc xe SH.

Bình luận (0)
Nguyễn Trần Minh Tâm
23 tháng 2 lúc 17:30

Gọi vận tốc của oto là x( x>20; x>y) (km/h)

Gọi vận tốc của xa máy là y (km/h)

Vì vận tốc của oto hơn xe máy 20km nên ta có: x-y=20 (1)

Vì A cách B 280 km nên ta có pt: 2x+2y=280 (2)

Từi (1) và (2) ta có HPT: \(\left\{{}\begin{matrix}x-y=20\\2x+2y=280\end{matrix}\right.\)

Giải hệ ta được \(\left\{{}\begin{matrix}x=80\\y=60\end{matrix}\right.\) (TM)

Vậy vận tốc oto và xe máy lần lượt là 80km/h và 60km/h.

Bình luận (0)

Gọi số cần tìm là \(\overline{ab}\)(Điều kiện: \(\left\{{}\begin{matrix}a,b\in N\\0< a\le10\\0\le b\le10\end{matrix}\right.\))

Vì ba lần chữ số hàng chục lớn hơn chữ số hàng đơn vị là 6 đơn vị nên ta có phương trình: \(3a-b=6\)(1)

Vì khi viết hai chữ số ấy theo thứ tự ngược lại thì được một số mới lớn hơn số cũ là 36 đơn vị nên ta có phương trình: \(10b+a-\left(10a+b\right)=36\)

\(\Leftrightarrow10b+a-10a-b=36\)

\(\Leftrightarrow-9a+9b=36\)

\(\Leftrightarrow a-b=-4\)(2)

Từ (1) và (2) ta lập được hệ phương trình:

\(\left\{{}\begin{matrix}3a-b=6\\a-b=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2a=10\\a-b=-4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=5\\b=a+4=5+4=9\end{matrix}\right.\)(thỏa ĐK)

Vậy: Số cần tìm là 59

Bình luận (0)

Gọi x(ngày) và y(ngày) lần lượt là thời gian người thứ nhất và người thứ hai hoàn thành công việc khi làm một mình(Điều kiện: x>20; y>20)

Trong 1 ngày, người thứ nhất làm được: \(\dfrac{1}{x}\)(công việc)

Trong 1 ngày, người thứ hai làm được: \(\dfrac{1}{y}\)(công việc)

Trong 1 ngày, hai người làm được: \(\dfrac{1}{20}\)(công việc)

Do đó, ta có phương trình: \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{20}\)(1)

Vì khi làm chung được 10 ngày thì người thứ nhất đi làm việc khác, người thứ hai vẫn tiếp tục công việc và hoàn thành trong 15 ngày nên ta có phương trình:

\(\dfrac{10}{x}+\dfrac{25}{y}=1\)(2)

Từ (1) và (2) ta lập được hệ phương trình:

\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{20}\\\dfrac{10}{x}+\dfrac{25}{y}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{10}{x}+\dfrac{10}{y}=\dfrac{1}{2}\\\dfrac{10}{x}+\dfrac{25}{y}=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{-15}{y}=\dfrac{-1}{2}\\\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{20}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=30\\\dfrac{1}{x}=\dfrac{1}{20}-\dfrac{1}{30}=\dfrac{1}{60}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=60\\y=30\end{matrix}\right.\)(thỏa ĐK)

Vậy: Người thứ nhất cần 60 ngày để hoàn thành công việc khi làm một mình

Người thứ hai cần 30 ngày để hoàn thành công việc khi làm một mình

Bình luận (1)

Hình như đề thiếu rồi bạn

Bình luận (1)

Khoá học trên OLM của Đại học Sư phạm HN

Loading...

Khoá học trên OLM của Đại học Sư phạm HN