Giari PT: x^4+6x^2+1=0
Giari PT : (x+2)(x+3)(x+4)(x+5)-24=0
\(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24=0\\ \Leftrightarrow\left[\left(x+2\right)\left(x+5\right)\right]\cdot\left[\left(x+3\right)\left(x+4\right)\right]=24\\ \Leftrightarrow\left(x^2+7x+10\right)\left(x^2+7x+12\right)=24\)
đặt \(t=x^2+7x+11\) khi đó ta có
\(\left(t-1\right)\left(t+1\right)=24\\ \Leftrightarrow t^2-1-24=0\\ \Leftrightarrow\left(t-5\right)\left(t+5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}t=5\\t=-5\end{matrix}\right.\)
Trở về ẩn x ta có
Với t=5
\(x^2+7x+11=5\Leftrightarrow x^2+7x+6\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-6\end{matrix}\right.\)
Với t=-5
\(x^2+7x+11=-5\\\Leftrightarrow x^2+7x+16=0\\ \Leftrightarrow\left(x+3,5\right)^2+3,75=0\)
Voi \(\left(x+3,5\right)^2\ge0\Rightarrow\varnothing\)
Vậy ...................
Giari pt
\(\left(x^2-5\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-5=0\\x+3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2=5\\x=-3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\sqrt{5}\\x=\sqrt{5}\\x=-3\end{matrix}\right.\)
\(=>\left[{}\begin{matrix}x^2-5=0\\x+3=0\end{matrix}\right.< =>\left[{}\begin{matrix}x=\pm\sqrt{5}\\x=-3\end{matrix}\right.\)
vậy.....
⇔[x2−5=0x+3=0⇔[x2−5=0x+3=0
⇔[x2=5x=−3⇔[x2=5x=−3
⇔⎡⎢⎣x=−√5x=√5x=−3
bài 1: Cho pt bậc hai: \(^{x^2}\)+2(n-2)x+\(n^2\)-4=0(1) (n là tham số)
a)Giari pt(1) khi n=1
b)Tìm n để pt(1) có nghiệm x1, x2 tm x1.x2+2(x1+x2)=7
HELPP MEE : Giari pt
a) (x-3)(x-2)<0
b) (x+3)(x+4)(x2+2)\(\ge\) 0
c) \(\dfrac{x-1}{x-2}\) \(\ge\)0
d)\(\dfrac{x+3}{2-x}\)\(\ge\) 0
e) (x-3)(x-2)(x+1)<0
g) \(\dfrac{2}{x-1}\)<0
k) x2 +3x+2>0
m) x2+1<0
a: (x-3)(x-2)<0
=>x-2>0 và x-3<0
=>2<x<3
b: \(\left(x+3\right)\left(x+4\right)\left(x^2+2\right)\ge0\)
=>(x+3)(x+4)>=0
=>x+3>=0 hoặc x+4<=0
=>x>=-3 hoặc x<=-4
c: \(\dfrac{x-1}{x-2}\ge0\)
=>x-2>0 hoặc x-1<=0
=>x>2 hoặc x<=1
d: \(\dfrac{x+3}{2-x}>=0\)
=>\(\dfrac{x+3}{x-2}< =0\)
=>x+3>=0 và x-2<0
=>-3<=x<2
Bài 1:
Giari PT: \(\frac{1}{2}log_{\sqrt{2}}\left(x+3\right)+\frac{1}{4}log_4\left(x-1\right)^8=3log_8\left(4x\right)\)
Bài 2:
Tìm m để PT sau có nghiệm: \(x\in\left[0;1+\sqrt{3}\right]\):
\(m\left(\sqrt{x^2-2x+2}+1\right)+x\left(2-x\right)\le0\)(2)
Bài 3:
Giari HPT: \(\hept{\begin{cases}x^4-4x^2+y^2-6y+9=0\\x^2y+x^2+2y-22=0\end{cases}}\)(2)
P/s: Mình không cần gấp,cuối tuần mình mới nộp. Cac bạn gắng giúp mình nha!
Giari PT: (x^2+x+1)(x^2+x+2)=12
\(\left(x^2+x+1\right)\left(x^2+x+2\right)=12\)
Đặt \(x^2+x+1=t\) khi đó ta có
\(t\left(t+1\right)=12\\ \Leftrightarrow t^2+t-12=0\\ \Leftrightarrow\left[{}\begin{matrix}t=3\\t=-4\end{matrix}\right.\)
Trở về ẩn x
Với t=3
\(x^2+x+1=3\\ \Leftrightarrow x^2+x-2=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
Với t=-4
\(x^2+x+1=-4\Leftrightarrow x^2+x+1+4=0\)
Ma \(x^2+x+1>0\forall x\)
Suy ra không có giá trị nào của x tồn tại
trắc nghiệm
câu 1. Phương trình: 6x-15=-4+25 có nghiệm là:
A. x=2 B.x=4 C. x=-2 D.x=3
Câu 2.Trong các phương trình sau,pt nào là pt bậc nhất 1 ẩn?
A=x2+xy+y2=0 B. 8x3-6x+4=0 C. -\(\sqrt{9x}\)+2=0 D. (2x-2)(4x+1)=0
Câu 3. Tập nghiệm của pt \(\left(3x-\dfrac{2}{3}\right)\left(\dfrac{-1}{2}-x\right)=0\)
A. S=A.S={\(\dfrac{-2}{5};\dfrac{1}{2}\)} B. S={\(\dfrac{2}{9};\dfrac{-1}{2}\)} C. S={\(\dfrac{-2}{9};\dfrac{1}{2}\)} D. S={\(\dfrac{-2}{9};\dfrac{-1}{2}\)}
Câu 4.ĐKXĐ của pt \(\dfrac{3x+2}{x+3}+\dfrac{4+x}{1-x}=\dfrac{3x-1}{x^2-9}\);
A. x≠+-3 B. x≠3;x≠1 C. x≠-3;x≠1 D.x≠+-3;x≠1
Câu 5. Cho Δ ABC ∞ ΔDEF. Khẳng định nào sau đây đúg
A. \(\widehat{A}\)=\(\widehat{f}\) B.\(\widehat{A}\) =\(\widehat{E}\) C.AB=DE D.AB.DF=AC.DE
Câu 6. Cho Δ ABC ∞ ΔA'B'C' theo tỉ số đồng dạng là \(\dfrac{2}{3}\) và chu vi ΔA'B'C' là 120cm khi đó chu vi ΔABC là:
A.40cm B.60cm C.72cm D.80cm
Câu 7.Cho Δ ABC có M ϵ AB và BM = \(\dfrac{1}{4}AB\), vẽ MN//AC,(N ϵ BC). Biết MN =2cm, Thì AC=:
A.6cm B.4cm C. 8cm D.10cm
Câu 8.Cho AD là phân giác ΔABC (D ϵ BC).Có AB=15cm ;AC=24cm.Độ dài cạnh BC là:
A.13cm B.18cm C.20cm D.22cm
Câu 8 A
Câu 7 C
Câu 6D
5D
4D
2C
1A
ai giải được bài mình xin tặng 2GP ạ
HELPP MEE : Giari pt
a) (x-3)(x-2)<0
b) (x+3)(x+4)(x2+2)\(\ge\) 0
c) \(\dfrac{x-1}{x-2}\) \(\ge\)0
d)\(\dfrac{x+3}{2-x}\)\(\ge\) 0
e) (x-3)(x-2)(x+1)<0
g) \(\dfrac{2}{x-1}\)<0
k) x2 +3x+2>0
m) x2+1<0
Ta có : (x - 3)(x - 2) < 0
Nên sảy ra 2 trường hợp : D
Th1 : \(\hept{\begin{cases}x-3< 0\\x-2>0\end{cases}\Rightarrow\hept{\begin{cases}x< 3\\x>2\end{cases}\Rightarrow}2< x< 3}\)
Th2 : \(\hept{\begin{cases}x-3>0\\x-2< 0\end{cases}\Rightarrow\hept{\begin{cases}x>3\\x< 2\end{cases}\left(loại\right)}}\)
Vậy 2 < x < 3
1. Tìm m để pt : \(x^2-\left(2m-3\right)x+m^2-4=0\) có 2 nghiệm pb sao cho tổng bp 2 nghiệm <17
2. Tìm m để pt \(x^4-\left(m+1\right)x^2+m^2-m+2=0\) có 3 nghiệm pb
3. Tìm m để pt \(x^2-6x+m-2=0\) có 2 nghiệm x>0
1.
Yêu cầu bài toán thỏa mãn khi:
\(\left\{{}\begin{matrix}\Delta=25-12m>0\\x_1^2+x_2^2< 17\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{25}{12}\\\left(x_1+x_2\right)^2-2x_1x_2< 17\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{25}{12}\\\left(2m-3\right)^2-2\left(m^2-4\right)< 17\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{25}{12}\\2m^2-12m< 0\end{matrix}\right.\)
\(\Leftrightarrow0< m< \dfrac{25}{12}\)
3.
Yêu cầu bài toán thỏa mãn khi:
\(\left\{{}\begin{matrix}\Delta'=11-m>0\\x_1+x_2>0\\x_1x_2>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 11\\6>0\\m-2>0\end{matrix}\right.\)
\(\Leftrightarrow2< m< 11\)