Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đặng Dung
Xem chi tiết
Thanh Trúc
Xem chi tiết
Nguyễn Hà Phương
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 5 2022 lúc 23:54

\(A=\dfrac{1}{1+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+\dfrac{1}{\sqrt{3}+\sqrt{4}}+\dfrac{1}{\sqrt{4}+\sqrt{5}}\)

\(=\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+\sqrt{5}-\sqrt{4}+\sqrt{6}-\sqrt{5}\)

\(=\sqrt{6}-\sqrt{2}\)

Hoài Thu
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 9 2022 lúc 22:00

\(\sqrt{1^3+2^3}=\sqrt{\left(1+2\right)^2}=3\)

\(\sqrt{1^3+2^3+3^3}=\sqrt{\left(1+2+3\right)^2}=1+2+3=6\)

=>\(\sqrt{1^3+2^3+...+n^3}=\left(1+2+...+n\right)\)

=>\(\dfrac{1}{3}+\dfrac{1}{6}+...+\dfrac{1}{1+2+...+n}=\dfrac{2015}{2017}\)

\(\Leftrightarrow\dfrac{2}{6}+\dfrac{2}{12}+...+\dfrac{2}{n\left(n+1\right)}=\dfrac{2015}{2017}\)

\(\Leftrightarrow2\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{n}-\dfrac{1}{n+1}\right)=\dfrac{2015}{2017}\)

\(\Leftrightarrow\dfrac{1}{2}-\dfrac{1}{n+1}=\dfrac{2015}{4034}\)

=>1/(n+1)=1/2017

=>n+1=2017

=>n=2016

 

Linh Nhi
Xem chi tiết
nguyen manh duc
Xem chi tiết
DƯƠNG PHAN KHÁNH DƯƠNG
22 tháng 7 2018 lúc 11:25

Câu a : Ta có :

\(\dfrac{1}{1+\sqrt{2}}=\dfrac{1-\sqrt{2}}{\left(1+\sqrt{2}\right)\left(1-\sqrt{2}\right)}=\dfrac{1-\sqrt{2}}{1-2}=\dfrac{1-\sqrt{2}}{-1}=-1+\sqrt{2}\)

\(\dfrac{1}{\sqrt{2}+\sqrt{3}}=\dfrac{\sqrt{2}-\sqrt{3}}{\left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{2}-\sqrt{3}\right)}=\dfrac{\sqrt{2}-\sqrt{3}}{2-3}=\dfrac{\sqrt{2}-\sqrt{3}}{-1}=-\sqrt{2}+\sqrt{3}\)

.....................

\(\dfrac{1}{\sqrt{n^2-1}+\sqrt{n^2}}=\dfrac{\sqrt{n^2-1}-\sqrt{n^2}}{\left(\sqrt{n^2-1}+\sqrt{n^2}\right)\left(\sqrt{n^2-1}-\sqrt{n^2}\right)}=\dfrac{\sqrt{n^2-1}-\sqrt{n^2}}{-1}=-\sqrt{n^2-1}+\sqrt{n^2}\)

Thay vào ta được :

\(S=\dfrac{1}{1+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+...+\dfrac{1}{\sqrt{n^2-1}+\sqrt{n^2}}=-1+\sqrt{2}-\sqrt{2}+\sqrt{3}-...........-\sqrt{n^2-1}+\sqrt{n^2}\)

\(=-1+\sqrt{n^2}\)

Akai Haruma
23 tháng 7 2018 lúc 10:54

Câu b:

Đặt biểu thức đã cho là $A$

Ta có:

\(A>\frac{1}{2}\left(\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}\right)+\frac{1}{2}\left(\frac{1}{\sqrt{3}+\sqrt{4}}+\frac{1}{\sqrt{4}+\sqrt{5}}\right)+...+\frac{1}{2}\left(\frac{1}{\sqrt{n^2-2}+\sqrt{n^2-1}}+\frac{1}{\sqrt{n^2-1}+\sqrt{n^2}}\right)\)

\(\Leftrightarrow A> \frac{1}{2}\left(\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{n^2-1}+\sqrt{n^2}}\right)\)

\(\Leftrightarrow A> \frac{1}{2}(n-1)\) (áp dụng cách tính toán phần a)

Lại có:

\(A< \frac{1}{2}\left(\frac{1}{0+\sqrt{1}}+\frac{1}{1+\sqrt{2}}\right)+\frac{1}{2}\left(\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}\right)+....+\frac{1}{2}\left(\frac{1}{\sqrt{n^2-3}+\sqrt{n^2-2}}+\frac{1}{\sqrt{n^2-2}+\sqrt{n^2-1}}\right)\)

\(\Leftrightarrow A< \frac{1}{2}\left(\frac{1}{0+\sqrt{1}}+\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+....+\frac{1}{\sqrt{n^2-2}+\sqrt{n^2-1}}\right)\)

\(\Leftrightarrow A< \frac{\sqrt{n^2-1}}{2}\) (áp dụng cách tính toán của phần a)

Vậy \(\frac{\sqrt{n^2-1}}{2}> A> \frac{n-1}{2}\) hay \(\sqrt{t(t+1)}> A> t\) (đặt \(n=2t+1\) )

\(\sqrt{t(t+1)}< \sqrt{(t+1)(t+1)}=t+1\)

Do đó: \(t+1> A> t\)

\(\Rightarrow \lfloor{A}\rfloor=t=\frac{n}{2}\)

nguyen manh duc
21 tháng 7 2018 lúc 19:00

ai giúp e nhanh lên đc k

Neko Chan
Xem chi tiết
Hoang Hung Quan
2 tháng 7 2017 lúc 10:18

Giải:

\(\dfrac{1}{\left(k+1\right)\sqrt{k}+k\left(\sqrt{k+1}\right)}\) \(=\dfrac{\left(k+1\right)\sqrt{k}-k\left(\sqrt{k+1}\right)}{\left(k+1\right)^2k-k^2\left(k+1\right)}\)

\(=\dfrac{\left(k+1\right)\sqrt{k}-k\left(\sqrt{k+1}\right)}{\left(k+1\right)k\left(k+1-k\right)}=\dfrac{1}{\sqrt{k}}-\dfrac{1}{\sqrt{k+1}}\)

Áp dụng vào biểu thức ta có:

\(\dfrac{1}{2\sqrt{1}+1\sqrt{2}}+\dfrac{1}{3\sqrt{2}+2\sqrt{3}}\) \(+...+\dfrac{1}{2015\sqrt{2014}+2014\sqrt{2015}}\)

\(=\dfrac{1}{\sqrt{1}}-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{2014}}-\dfrac{1}{\sqrt{2015}}\)

\(=1-\dfrac{1}{\sqrt{2015}}\)

....
Xem chi tiết
Nguyễn Việt Lâm
30 tháng 6 2021 lúc 16:48

\(\dfrac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\dfrac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{\left(n+1\right)^2n-n^2\left(n+1\right)}\)

\(=\dfrac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)}=\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\)

Do đó:

\(VT=\dfrac{1}{\sqrt{1}}-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\)

\(VT=1-\dfrac{1}{\sqrt{n+1}}< 1\) (đpcm)

Mai Thanh Hoàng
Xem chi tiết