Chứng tỏ :
\(\dfrac{1}{\sqrt{x+2014}+\sqrt{y+2014}}-\dfrac{1}{\sqrt{2015-x}+\sqrt{2015-y}}+\dfrac{1}{\sqrt{2014-x}+\sqrt{2014-y}}\ne0\)
cm rằng
\(2\left(\sqrt{a}-\sqrt{b}\right)< \dfrac{1}{\sqrt{b}}< 2\left(\sqrt{b}-\sqrt{c}\right)\)
biết a,b,c là 3 số thực thỏa mãn đk a=b+1=c+2 , c>0
b)biểu thức \(B=\sqrt{1+2014^2+\dfrac{2014^2}{2015^2}}+\dfrac{2014}{2015}\) có giá trị là 1 số nguyên
Chứng tỏ \(1+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+.....+\dfrac{1}{\sqrt{2015}}\le2\sqrt{2015}\)
Gợi ý : áp dụng \(\sqrt{n+1}-\sqrt{n}>\dfrac{1}{2\sqrt{n+1}}\)
CMR: b) Biểu thức B=\(\sqrt{1+2014^2+\dfrac{2014^2}{2015^2}}+\dfrac{2014}{2015}\) có giá trị là một số nguyên
Rút gọn các biểu thức :
A=\(\dfrac{1}{\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}}\)
B= \(\dfrac{1}{1+\sqrt{3}}+\dfrac{1}{\sqrt{3}+\sqrt{5}}+\dfrac{1}{\sqrt{5}+\sqrt{7}}+...+\dfrac{1}{\sqrt{2015}+\sqrt{2017}}\)
Tìm x biết:
\(\sqrt{x^2-2x+1}+\sqrt{x^2-4x+4}=\sqrt{1+2015^2+\dfrac{2015^2}{2016^2}}+\dfrac{2015}{2016}\)
Câu 1: Cho 0<x<3. tìm GTNN của biểu thức A=\(\dfrac{81x}{3-x}\)+\(\dfrac{3}{x}\)
Câu 2: Tìm GTLN của biểu thức A= \(\dfrac{1}{3x-2\sqrt{6x}+5}\)
Câu 3: tìm GTNN của biểu thức A, biết A= \(2014\sqrt{x}+2015\sqrt{1-x}\)
1) Chứng minh rằng: \(1+\dfrac{1}{2\sqrt{2}}+\dfrac{1}{3\sqrt{3}}+...+\dfrac{1}{n\sqrt{n}}< 2\sqrt{2}\left(n\in N\right)\)
2) Chứng minh rằng: \(\dfrac{2}{3}+\sqrt{n+1}< 1+\sqrt{2}+\sqrt{3}+...+\sqrt{n}< \dfrac{2}{3}\left(n+1\right)\sqrt{n}\)
3) \(2\sqrt{n}-3< \dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{n}}< 2\sqrt{n}-2\)
4) \(\dfrac{\sqrt{2}-\sqrt{1}}{2+1}+\dfrac{\sqrt{3}-\sqrt{2}}{3+2}+...+\dfrac{\sqrt{n+1}-\sqrt{n}}{n+1+n}< \dfrac{1}{2}\left(1-\dfrac{1}{\sqrt{n+1}}\right)\)
a, Tính giá trị của biểu thức A= \(\dfrac{1}{\sqrt{1}+\sqrt{2}}\) + \(\dfrac{1}{\sqrt{2}+\sqrt{3}}\) + ...... + \(\dfrac{1}{\sqrt{48}+\sqrt{49}}\)
b, Tính giá trị biểu thức B = x3 + 2013x2y - 2014y3 + 2015 biết \(\dfrac{x}{y}\)\(\sqrt{\dfrac{y}{x}}\)= \(\dfrac{y}{x}\)\(\sqrt{\dfrac{x}{y}}\)