a)Tìm GTNN của biểu thức:
1) \(Q=\dfrac{A}{-x+3\sqrt{x}-2}\) với \(0\le x\le4\)
2) \(R=\dfrac{\sqrt{x}}{A}\)
b)Tìm GTLN của biểu thức:
\(C=\dfrac{A}{\sqrt{x}+7}\) với \(x>1\)
( Chú ý: \(A=\dfrac{x^2-1}{x^2+1}\) nha các bạn)
1. Giải phương trình:
a) x2 - 2x = 2\(\sqrt{2x-1}\)
b) 2(x2 + 2) = 5\(\sqrt{x^2+1}\)
c) x2 + 3x + 1 = (x+3)\(\sqrt{x^2+1}\)
2. Cho x,y,z>=0 thỏa mãn điều kiện x+y+z=a
a) Tìm GTLN của biểu thức A=xy+yz+xz
b) Tìm GTNN của biểu thức B=x2 + y2 + z2
3. Cho 0<x<1, tìm GTNN của B=\(\dfrac{3}{1-x}+\dfrac{4}{x}\)
Cho x,y,z >0 thỏa mãn \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=3\). Tìm GTLN của biểu thức \(P=\dfrac{1}{\sqrt{5x^2+2xy+2y^2}}+\dfrac{1}{\sqrt{5y^2+2yz+2z^2}}+\dfrac{1}{\sqrt{5z^2+2xz+2x^2}}\)
Cho 3 số thực a,b,c dương và thỏa mãn: \(a^2+b^2+c^2=3\). Tìm GTNN của biểu thức: \(A=\dfrac{1}{\sqrt{1+8a^3}}+\dfrac{1}{\sqrt{1+8b^3}}+\dfrac{1}{\sqrt{1+8c^3}}\)
Cho hai biểu thức: \(A=\dfrac{\sqrt{x}-3}{2\sqrt{x}+6}\) và \(B=\dfrac{\sqrt{x}-3}{\sqrt{x}+2}\) với \(x\ge0;x\ne4;x\ne9\). Với x là số tự nhiên thỏa mãn: x>3, tìm giá trị lớn nhất của biểu thức \(P=\dfrac{B}{A}\)
Cho biểu thức: \(A=\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right):\dfrac{\sqrt{x}-1}{2}\). Tìm tất cả các giá trị của x để biểu thức A nhận giá trị là 1 số nguyên
1.cho biểu thức A=\(\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{4\sqrt{x}-4}{\sqrt{x}\left(\sqrt{x}-2\right)}\) với x>0,x\(\ne4\)
a.rút gọn biểu thức M
b.tính giá trị của M khi x=3+2\(\sqrt{2}\)
c.tìm giá trị của x để M>0
Tìm GTNN của biểu thức A=\(\dfrac{x-5}{\sqrt{x-2}-\sqrt{3}}\)
Cho biểu thức: \(A=\dfrac{\sqrt{x}-2}{\sqrt{x}+2}\) với \(x\ge0;x\ne4\). Tìm các giá trị của x để \(A< \dfrac{-2}{3}\)