gpt
\(3x-1+\dfrac{x-1}{4x}=\sqrt{3x+1}\)
1, gpt:
\(3\sqrt{1+x}+3\sqrt{3-3x}=\sqrt{28x^2-12x+9}\)
2, giải hpt:
\(\left\{{}\begin{matrix}\dfrac{4}{2x+y}+\dfrac{1}{3x-y}=2\\4x+12y=7\left(2x+y\right)\left(3x-y\right)\end{matrix}\right.\).
GPT: \(x^2+2x\sqrt{x-\dfrac{1}{x}}=3x+1\)
\(ĐKXĐ:x\ne0,x-\dfrac{1}{x}\ge0\)
Chia cả hai vế của phương trình đầu cho \(x\ne0\) ta có :
\(x+2\sqrt{x-\dfrac{1}{x}}=3+\dfrac{1}{x}\)
\(\Leftrightarrow x-\dfrac{1}{x}+2\sqrt{x-\dfrac{1}{x}}-3=0\)
Đặt \(\sqrt{x-\dfrac{1}{x}}=a\left(a\ge0\right)\)
Khi đó pt có dạng : \(a^2+2a-3=0\Leftrightarrow\left(a+3\right)\left(a-1\right)=0\)
\(\Leftrightarrow a=1\) ( do \(a\ge0\) )
\(\Rightarrow\sqrt{x-\dfrac{1}{x}}=1\Rightarrow x-\dfrac{1}{x}=1\)
\(\Leftrightarrow x=\dfrac{1\pm\sqrt{5}}{2}\) ( thỏa mãn ĐKXĐ )
Gpt:
a.\(\sqrt{2x^2+8x+6}+\sqrt{x^2-1}=2x+2\)
b. \(\sqrt{4x+1}-\sqrt{3x-2}=\dfrac{x+3}{5}\)
c.\(\sqrt{x^2-3x+2}-\sqrt{x+3}=\sqrt{x-2}+\sqrt{x^2+2x-3}\)
\(\sqrt{x^2-3x+2}-\sqrt{x+3}=\sqrt{x-2}+\sqrt{x^2+2x-3}\)
\(\Leftrightarrow\left(\sqrt{x^2-3x+2}-\sqrt{x-2}\right)-\left(\sqrt{x^2+2x-3}+\sqrt{x+3}\right)=0\)
\(\Leftrightarrow\dfrac{\left(x^2-3x+2\right)-\left(x-2\right)}{\sqrt{x^2-3x+2}+\sqrt{x-2}}-\dfrac{\left(x^2+2x-3\right)-\left(x+3\right)}{\sqrt{x^2+2x-3}-\sqrt{x+3}}=0\)
\(\Leftrightarrow\dfrac{\left(x-2\right)^2}{\sqrt{\left(x-2\right)\left(x-1\right)}+\sqrt{x-2}}-\dfrac{\left(x-2\right)\left(x+3\right)}{\sqrt{\left(x+3\right)\left(x-1\right)}-\sqrt{x+3}}=0\)
\(\Leftrightarrow\left(x-2\right)\left[\dfrac{x-2}{\sqrt{x-2}\left(\sqrt{x-1}+1\right)}-\dfrac{x+3}{\sqrt{x+3}\left(\sqrt{x-1}-1\right)}\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left[\dfrac{\sqrt{x-2}}{\sqrt{x-1}+1}-\dfrac{\sqrt{x+3}}{\sqrt{x-1}-1}\right]=0\)
Pt \(\dfrac{\sqrt{x-2}}{\sqrt{x-1}+1}-\dfrac{\sqrt{x+3}}{\sqrt{x-1}-1}=0\) vô no
(vì \(\dfrac{\sqrt{x-2}}{\sqrt{x-1}+1}< \dfrac{\sqrt{x+3}}{\sqrt{x-1}-1}\forall x\ge2\Rightarrow VT< 0\))
=> x - 2 = 0
<=> x = 2 (nhận)
\(\sqrt{4x+1}-\sqrt{3x-2}=\dfrac{x+3}{5}\)
\(\Leftrightarrow\dfrac{\left(4x+1\right)-\left(3x-2\right)}{\sqrt{4x+1}+\sqrt{3x-2}}-\dfrac{x+3}{5}=0\)
\(\Leftrightarrow\dfrac{x+3}{\sqrt{4x+1}+\sqrt{3x-2}}-\dfrac{x+3}{5}=0\)
\(\Leftrightarrow\left(\dfrac{1}{\sqrt{4x+1}+\sqrt{3x-2}}-\dfrac{1}{5}\right)\left(x+3\right)=0\)
TH1:
x + 3 = 0
<=> x = - 3 (loại)
TH2:
\(\dfrac{1}{\sqrt{4x+1}+\sqrt{3x-2}}-\dfrac{1}{5}=0\)
\(\Leftrightarrow\sqrt{4x+1}+\sqrt{3x-2}=5\)
\(\Leftrightarrow\left(\sqrt{4x+1}-3\right)+\left(\sqrt{3x-2}-2\right)=0\)
\(\Leftrightarrow\dfrac{4x+1-9}{\sqrt{4x+1}+3}+\dfrac{3x-2-4}{\sqrt{3x-2}+2}=0\)
\(\Leftrightarrow\dfrac{4\left(x-2\right)}{\sqrt{4x+1}+3}+\dfrac{3\left(x-2\right)}{\sqrt{3x-2}+2}=0\)
\(\Leftrightarrow\left(\dfrac{4}{\sqrt{4x+1}+3}+\dfrac{3}{\sqrt{3x-2}+2}\right)\left(x-2\right)=0\)
Pt \(\dfrac{4}{\sqrt{4x+1}+3}+\dfrac{3}{\sqrt{3x-2}+2}>0\forall x\ge\dfrac{2}{3}\) => vô no
=> x - 2 = 0
<=> x = 2 (nhận)
~ ~ ~
Vậy x = 2
\(\sqrt{2x^2+8x+6}+\sqrt{x^2-1}=2x+2\)
\(\Leftrightarrow\sqrt{2\left(x^2+4x+3\right)}-\left[\left(2x+2\right)-\sqrt{x^2-1}\right]=0\)
\(\Leftrightarrow\sqrt{2\left(x+3\right)\left(x+1\right)}-\dfrac{\left(4x^2+8x+4\right)-\left(x^2-1\right)}{\sqrt{x^2-1}+2x+2}=0\)
\(\Leftrightarrow\sqrt{2\left(x+3\right)\left(x+1\right)}-\dfrac{\left(x+1\right)\left(3x+5\right)}{\sqrt{\left(x-1\right)\left(x+1\right)}+2\left(x+1\right)}=0\)
\(\Leftrightarrow\sqrt{x+1}\left[2\sqrt{x+3}-\dfrac{\sqrt{x+1}\left(3x+5\right)}{\sqrt{x+1}\left(\sqrt{x-1}+2\sqrt{x+1}\right)}\right]=0\)
\(\Leftrightarrow\sqrt{x+1}\left[2\sqrt{x+3}-\dfrac{3x+5}{\sqrt{x-1}+2\sqrt{x+1}}\right]=0\)
TH1
x + 1 = 0
<=> x = - 1 (loại)
TH2
\(2\sqrt{x+3}-\dfrac{3x+5}{\sqrt{x-1}+2\sqrt{x+1}}=0\)
mà \(2\sqrt{x+3}=\dfrac{4x+12}{2\sqrt{x+3}}>\dfrac{3x+5}{\sqrt{x-1}+2\sqrt{x+1}}\forall x\ge1\)
=> VT > 0
=> vô no
~ ~ ~
Vậy pt vô no
gpt:
\(\left(x^2-3x+2\right)\sqrt{\dfrac{x+3}{x-1}}=-\dfrac{1}{2}x^3+\dfrac{15}{2}x-11\\ \)
\(\left(x^2-3x+2\right)\sqrt{\dfrac{x+3}{x-1}}=-\dfrac{1}{2}x^3+\dfrac{15}{2}x-11\left(1\right)\)
Đk: \(\sqrt{\dfrac{x+3}{x-1}}\ge0\Leftrightarrow\left[{}\begin{matrix}x>1\\x\le-3\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow-2\left(x-1\right)\left(x-2\right)\sqrt{\dfrac{x+3}{x-1}}=x^3-15x+22\)
\(\Rightarrow-2\sqrt{\left(x-1\right)\left(x+3\right)}.\left(x-2\right)=\left(x-2\right)\left(x^2+2x-11\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\left(nhận\right)\\-2\sqrt{\left(x-1\right)\left(x+3\right)}=x^2+2x-11\left(2\right)\end{matrix}\right.\)
\(\left(2\right)\Leftrightarrow-2\sqrt{x^2+2x-3}=\left(x^2+2x-3\right)-8\)
Đặt \(a=\sqrt{x^2+2x-3}\left(a\ge0\right)\). Từ phương trình (2) suy ra:
\(a^2+2a-8=0\Leftrightarrow\left[{}\begin{matrix}a=2\left(nhận\right)\\a=-4\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{x^2+2x-3}=2\Leftrightarrow x^2+2x-7=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1+2\sqrt{2}\left(nhận\right)\\x=-1-2\sqrt{2}\left(nhận\right)\end{matrix}\right.\)
Thử lại ta có \(x=2\) và \(x=-1+2\sqrt{2}\) là 2 nghiệm của phương trình (1).
\(\Leftrightarrow2\left(x^2-3x+2\right)\cdot\sqrt{\dfrac{x+3}{x-1}}=-x^3+15x-22\)
\(\Leftrightarrow2\left(x-2\right)\left(x-1\right)\cdot\dfrac{\sqrt{\left(x+3\right)\left(x-1\right)}}{x-1}=-x^3+2x^2-2x^2+4x+11x-22\)
\(\Leftrightarrow2\left(x-2\right)\sqrt{\left(x+3\right)\left(x-1\right)}=\left(x-2\right)\left(-x^2-2x+11\right)\)
\(\Leftrightarrow\left(x-2\right)\left(\sqrt{4\left(x^2+2x-3\right)}+x^2+2x-11\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\left(1\right)\\2\sqrt{x^2+2x-3}+x^2+2x-11=0\left(2\right)\end{matrix}\right.\)
(1) =>x=2
(2): Đặt \(\sqrt{x^2+2x-3}=a\left(a>=0\right)\)
=>2a+a^2-8=0
=>(a+4)(a-2)=0
=>a=2
=>x^2+2x-3=4
=>x^2+2x-7=0
=>\(x=-1\pm2\sqrt{2}\)
Câu 1:
a, limx→-∞ \(\dfrac{x+\sqrt{x^2+2}}{\sqrt{8x^2+5x+2}}\)
b, limx→-∞ \(\dfrac{\sqrt{x^2+2x}+3x}{\sqrt{4x^2+1}-x+2}\)
c, limx→-∞ \(\dfrac{x+\sqrt{x^2+x}}{3x-\sqrt{x^2+1}}\)
d, limx→-∞ \(\dfrac{\sqrt{x^2+x+2}+3x}{\sqrt{4x^2+1}-x+1}\)
\(\lim\limits_{x\rightarrow-\infty}\dfrac{x+\sqrt{x^2+2}}{\sqrt{8x^2+5x+2}}=\dfrac{1+\sqrt{1+\dfrac{2}{x^2}}}{\sqrt{8+\dfrac{5}{x}+\dfrac{2}{x^2}}}=\dfrac{1+\sqrt{1}}{\sqrt{8}}=\dfrac{\sqrt{2}}{2}\).
Giải phương trình:
1. \(5x^2+2x+10=7\sqrt{x^4+4}\)
2. \(\dfrac{4}{x}+\sqrt{x-\dfrac{1}{x}}=x+\sqrt{2x-\dfrac{5}{x}}\)
3. \(\sqrt{x^2+2x}=\sqrt{3x^2+4x+1}-\sqrt{3x^2+4x+1}\)
gpt \(4x^3-\sqrt{1-x^2}-3x=0\)
Cái trước bị nhầm !!! Cái này mới đúng ! ^^
Điều kiện xác định \(\frac{\sqrt{3}}{2}\le x\le1\)
\(4x^3-\sqrt{1-x^2}-3x=0\)
\(\Leftrightarrow\left(-4x+4x^3\right)-\sqrt{1-x^2}+x=0\Leftrightarrow-4x\left(1-x^2\right)-\sqrt{1-x^2}+x=0\) .
Đặt \(t=\sqrt{1-x^2},t\ge0\) , pt trở thành \(-4x.t^2-t+x=0\)
Xét \(\Delta=1+16x^2>0\) => PT có hai nghiệm phân biệt .
TH1. \(t=\frac{1-\sqrt{1+16x^2}}{-8x}\) \(\Leftrightarrow\sqrt{1-x^2}=\frac{1-\sqrt{1+16x^2}}{-8x}\Leftrightarrow-8x\sqrt{1-x^2}=1-\sqrt{1+16x^2}\)
TH2. \(t=\frac{1+\sqrt{1+16x^2}}{-8x}\Leftrightarrow\sqrt{1-x^2}=\frac{1+\sqrt{1+16x^2}}{-8x}\Leftrightarrow-8x\sqrt{1-x^2}=1+\sqrt{1+16x^2}\)
Dễ dàng giải được các pt trên.
Ngoài chị@Hoàng Lê Bảo Ngọc và chị @Trần Việt Linh thì ít ai giải đc bài này
1)
a) gpt \(\sqrt{5-3x}+\sqrt{x+1}=\sqrt{3x^2-4x+4}\)
b) ghpt \(\left\{{}\begin{matrix}2xy+4x+3y+6=0\\4x^2+y^2+12x+4y+9=0\end{matrix}\right.\)
gpt : \(x^2-4x+5-\frac{3x}{x^2+x+1}=\left(x-1\right)\left(1-\frac{2\sqrt{1-x}}{\sqrt{x^2+x+1}}\right)\)