cho (p) : y=\(\dfrac{x^2}{4}\) và đường thẳng (d) đi qua điểm I(3/2;1) có hệ số góc m
a, vẽ (P) và viết phương trình (d)
b, tìm m sao cho (d) tiếp xúc (P)
c, tìm m sao cho (d) và (p) có hai điểm chung phân biệt
Bài 12: Cho (P): \(y=\dfrac{x^2}{4}\)và đường thẳng (d) đi qua điểm I \(\left(\dfrac{3}{2};1\right)\) có hệ số góc là m
1. Vẽ (P) và viết Phương trình (d)
2. Tìm m sao cho (d) tiếp xúc (P)
3. Tìm m sao cho (d) và (P) có hai điểm chung phân biệt
Cho hàm số y=ax2 (P) (a khác 0) đi qua điểm A(1;2)
a) xác gđịnh a và vẽ đồ thị hàm số vừa tìm dc
b) đường thẳng y= -x + b cắt (P) tại 2 điểm A và B. Xác định b và vẽ tọa độ điểm B
c) cho đường thẳng (d): y= mx - m2 - \(\dfrac{3}{2}\)m -\(\dfrac{3}{4}\). Chứng minh (d) và (P) không cắt nhau với mọi giá trị m
a) Thay x=1 và y=2 vào (P), ta được:
\(a\cdot1^2=2\)
hay a=2
Viết phương trình đường thẳng thỏa mãn:
a) Đi qua điểm A( \(\dfrac{1}{2};\dfrac{7}{4}\) ) và song song với đường thẳng y = \(\dfrac{3}{2}x\)
b) Cắt trục tung tại điểm có tung độ bằng 3 và đi qua điểm B(2;1)
c) Có hệ số góc bằng 3 và đi qua điểm P(\(\dfrac{1}{2};\dfrac{5}{2}\) )
d) Có tung độ gốc bằng -2,5 và đi qua điểm Q(1,5 ; 3,5)
e) Đi qua điểm M(1; 2) và N(3; 6)
Gọi (d): y = ax + b là đường thẳng cần viết
a) Do (d) song song với đường thẳng y = 3x/2 nên a = 3/2
⇒ (d): y = 3x/2 + b
Do (d) đi qua A(1/2; 7/4) nên:
3/2 . 1/2 + b = 7/4
⇔ 3/4 + b = 7/4
⇔ b = 7/4 - 1/4
⇔ b = 1
Vậy (d): y = 3x/2 + 1
b) Do (d) cắt trục tung tại điểm có tung độ là 3 nên b = 3
⇒ (d): y = ax + 3
Do (d) đi qua điểm B(2; 1) nên:
a.2 + 3 = 1
⇔ 2a = 1 - 3
⇔ 2a = -2
⇔ a = -2 : 2
⇔ a = -1
Vậy (d): y = -x + 3
c) Do (d) có hệ số góc là 3 nên a = 3
⇒ (d): y = 3x + b
Do (d) đi qua P(1/2; 5/2) nên:
3.1/2 + b = 5/2
⇔ 3/2 + b = 5/2
⇔ b = 5/2 - 3/2
⇔ b = 1
Vậy (d): y = 3x + 1
d: Gọi (d): y=ax+b(\(a\ne0\))
(d) có tung độ gốc là -2,5 nên (d) cắt trục tung tại điểm có tung độ là -2,5
Thay x=0 và y=-2,5 vào (d), ta được:
\(a\cdot0+b=-2,5\)
=>b=-2,5
=>y=ax-2,5
Thay x=1,5 và y=3,5 vào y=ax-2,5; ta được:
\(a\cdot1,5-2,5=3,5\)
=>\(a\cdot1,5=6\)
=>a=4
Vậy: (d): y=4x-2,5
e: Thay x=1 và y=2 vào (d), ta được:
\(a\cdot1+b=2\)
=>a+b=2(1)
Thay x=3 và y=6 vào (d), ta được:
\(a\cdot3+b=6\)
=>3a+b=6(2)
Từ (1) và (2), ta có hệ phương trình:
\(\left\{{}\begin{matrix}a+b=2\\3a+b=6\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}3a+3b=6\\3a+b=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2b=0\\a+b=2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}b=0\\a=2-b=2-0=2\end{matrix}\right.\)
Vậy: (d): y=2x
cho (P): y=-\(\dfrac{x^2}{4}\) và (d): y=x+m
a,xác định phương trình đường thẳng (d') song song với đường thẳng (d) và cắt (P) tại điểm có tung độ bằng -4
b, xác định phương trình đường thẳng (d'') vuông góc với (d') và đi qua giao điểm của (d') và (P)
d' // d ⇒ phương trình đường thẳng d' có dạng y = x + a (a khác m)
Gọi d' cắt (p) tại điểm A ⇒ yA = -4 ⇒ \(y_A=\dfrac{-x^2_A}{4}=-4\) ⇒ \(-x^2_A=-16\) ⇒ \(x^2_A=16\) ⇒ \(x_A=4;-4\)
+ Với A(4; -4) ; A ∈∈ d' => -4 = 4 + a=> a = - 8 => (d') có dạng : y = x -8
+ Với A(-4; -4); A ∈∈ d' => -4 = -4 + a => a = 0 => (d') có dạng : y = x
Cho parabol (P): \(y=\dfrac{x^2}{2}\) và đường thẳng (d): \(y=mx+\dfrac{1}{2}\)
a) C/M (d) luôn đi qua điểm cố định
b) C/M (d) luôn cắt (P) tại 2 điểm M và N
c) Tìm tập hợp trung điểm I của đoạn thẳng MN
Dạ bày em câu (c) với ạ em không biết làm:"(
Pt hoành độ giao điểm (P) và (d):
\(\dfrac{x^2}{2}=mx+\dfrac{1}{2}\Leftrightarrow x^2-2mx-1=0\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_M+x_N=2m\\x_Mx_N=-1\end{matrix}\right.\)
Gọi I là trung điểm MN \(\Rightarrow\left\{{}\begin{matrix}x_I=\dfrac{x_M+x_N}{2}\\y_I=\dfrac{y_M+y_N}{2}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x_I=\dfrac{2m}{2}=m\\y_I=\dfrac{m.x_M+\dfrac{1}{2}+m.x_N+\dfrac{1}{2}}{2}=\dfrac{m\left(x_M+x_N\right)+1}{2}=m^2+\dfrac{1}{2}\end{matrix}\right.\)
\(\Rightarrow y_I=x_I^2+\dfrac{1}{2}\)
Hay tập hợp I là parabol có pt: \(y=x^2+\dfrac{1}{2}\)
bài 1 ;cho đường thẳng d;y=ax+3 .Tìm hệ số góc của đường thẳng biết rằng
a, d song song với dường thẳng d' :3x-y-1=0
b, d vuông góc với đường thẳng d':4x+2y+\(3\sqrt{2}\)=0
c,d điểm quaA(-1;_2)
bài 2:Tìm hệ số góc của d biết rằng
a;d đi qua điểm A(\(\sqrt{2}\):1) và B(0;1+\(3\sqrt{2}\))
b;d đi qua C(\(\dfrac{1}{2}+-\dfrac{1}{4}\))và đồng quy hai đường thẳng d1:y=\(\dfrac{2}{5}x+1\)và d2 : y=-x+4
Bài 2:
a: (d): y=ax+b
Theo đề, ta có:
\(\left\{{}\begin{matrix}a\sqrt{2}+b=1\\a\cdot0+b=3\sqrt{2}+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=3\sqrt{2}+1\\a=\dfrac{1-b}{\sqrt{2}}=\dfrac{1-3\sqrt{2}-1}{\sqrt{2}}=-3\end{matrix}\right.\)
b: Tọa độ giao của (d1) và (d2) là:
2/5x+1=-x+4 và y=-x+4
=>7/5x=3và y=-x+4
=>x=15/7 và y=-15/7+4=13/7
Vì (d) đi qua B(15/7;13/7) và C(1/2;-1/4)
nên ta có hệ:
15/7a+b=13/7 và 1/2a+b=-1/4
=>a=59/46; b=-41/46
Trong mặt phẳng Oxy,cho điểm A(-5;2) và đường thẳng d:\(\dfrac{x-2}{1}=\dfrac{y+3}{-2}\).Lập phương trình chính tắc của đường thẳng d' trong các trường hợp sau
a) d' đi qua A và song song với d
b)d' đi qua A và vuông góc với d
d nhận (1;-2) là 1 vtcp
a. d' song song d nên nhận (1;-2) là 1 vtcp
Phương trình d': \(\dfrac{x+5}{1}=\dfrac{y-2}{-2}\)
b. d' vuông góc d nên nhận \(\left(2;1\right)\) là 1 vtcp
Phương trình d': \(\dfrac{x+5}{2}=\dfrac{y-2}{1}\)
Cho 2 đường thẳng(d1):y=2-x và (d2):\(y=\dfrac{-x}{3}-\dfrac{1}{2}\)
a)Vẽ trên cùng mặt phẳng Oxy,2 đường thẳng(d1) và (d2)
b)Xác định tọa độ giao điểm của 2 đường thẳng trên bằng đồ thị và bằng phép tính
c)Viết phương trình của đường thẳng (d) đi qua điểm \(N\in\left(d_2\right)\) có hoành độ bằng \(\dfrac{3}{4}\) và song song với \(\left(d_1\right)\)
b) Ta có: (d2): \(y=\dfrac{-x}{3}-\dfrac{1}{2}\)
\(\Leftrightarrow y=\dfrac{-1}{3}x-\dfrac{1}{2}\)
Gọi A(xA;yA) là giao điểm của (d1) và (d2)
Hoành độ của A là:
\(\dfrac{-1}{3}x-\dfrac{1}{2}=2-x\)
\(\Leftrightarrow\dfrac{-1}{3}x-\dfrac{1}{2}-2+x=0\)
\(\Leftrightarrow\dfrac{2}{3}x-\dfrac{5}{2}=0\)
\(\Leftrightarrow\dfrac{2}{3}x=\dfrac{5}{2}\)
\(\Leftrightarrow x=\dfrac{5}{2}:\dfrac{2}{3}=\dfrac{5}{2}\cdot\dfrac{3}{2}=\dfrac{15}{4}\)
Thay \(x=\dfrac{15}{4}\) vào hàm số y=2-x, ta được:
\(y=2-\dfrac{15}{4}=\dfrac{8}{4}-\dfrac{15}{4}=-\dfrac{7}{4}\)
Vậy: \(A\left(\dfrac{15}{4};-\dfrac{7}{4}\right)\)
Cho hàm số y= ax2 (P) đi qua điểm A(1;2)
a) xác định a và vẽ đồ thị
b) cho đường thẳng y =-x+b cắt (P) tại A và B. Xác định b và tính toạ độ B
c) cho đường thẳng (d): y= mx-m2-\(\dfrac{3}{2}m-\dfrac{3}{4}\) . chứng minh (d) và (P) không cắt nhau với mọi m
(P): \(y=2x^2\)
Phương trình hoành độ giao điểm (P) và (d):
\(2x^2=mx-m^2-\dfrac{3}{2}m-\dfrac{3}{4}\)
\(\Leftrightarrow2x^2-mx+m^2+\dfrac{3}{2}m+\dfrac{3}{4}=0\) (1)
\(\Delta=m^2-8\left(m^2+\dfrac{3}{2}m+\dfrac{3}{4}\right)=-7m^2-12m-6=-7\left(m+\dfrac{6}{7}\right)^2-\dfrac{6}{7}< 0\) ; \(\forall m\)
\(\Rightarrow\) (1) vô nghiệm với mọi m hau (d) và (P) ko cắt nhau với mọi m
Cho (d₁): y = -4x và (d₂): y = \(\dfrac{1}{2}x+3\)
a) Tìm tọa độ giao điểm B của (d₁) và (d₂)
b) Viết phương trình đường thẳng (d) đi qua điểm B và cắt đường thẳng (d₃): y = 5x - 3 tại điểm có hoành độ là 1.
a) Phương trình hoành độ giao điểm của (d₁) và (d₂):
-4x = x/2 + 3
⇔ x/2 + 4x = -3
⇔ 9x/2 = -3
⇔ x = -3 : 9/2
⇔ x = -2/3
⇒ y = -4.(-2/3) = 8/3
⇒ B(-2/3; 8/3)
b) Gọi (d): y = ax + b
Do (d) đi qua B(-2/3; 8/3) nên:
a.(-2/3)+ b = 8/3
⇔ b = 8/3 + 2a/3 (1)
Thay x = 1 vào (d₃) ta có:
y = 5.1 - 3 = 2
⇒ C(1; 2)
Do (d) cắt (d₃) tại C(1; 2) nên:
a.1 + b = 2
⇔ a + b = 2 (2)
Thay (1) vào (2) ta có:
a + 8/3 + 2a/3 = 2
⇔ 5a/3 = 2 - 8/3
⇔ 5a/3 = -2/3
⇔ a = -2/3 : 5/3
⇔ a = -2/5
Thay a = -2/5 vào (1) ta có:
b = 8/3 + 2/3 . (-2/5)
= 12/5
Vậy (d): y = -2x/5 + 12/5