Pt hoành độ giao điểm (P) và (d):
\(\dfrac{x^2}{2}=mx+\dfrac{1}{2}\Leftrightarrow x^2-2mx-1=0\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_M+x_N=2m\\x_Mx_N=-1\end{matrix}\right.\)
Gọi I là trung điểm MN \(\Rightarrow\left\{{}\begin{matrix}x_I=\dfrac{x_M+x_N}{2}\\y_I=\dfrac{y_M+y_N}{2}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x_I=\dfrac{2m}{2}=m\\y_I=\dfrac{m.x_M+\dfrac{1}{2}+m.x_N+\dfrac{1}{2}}{2}=\dfrac{m\left(x_M+x_N\right)+1}{2}=m^2+\dfrac{1}{2}\end{matrix}\right.\)
\(\Rightarrow y_I=x_I^2+\dfrac{1}{2}\)
Hay tập hợp I là parabol có pt: \(y=x^2+\dfrac{1}{2}\)