Tìm \(\overline{ab}\) sao cho \(\overline{ab}^2-\overline{ba}^2=1980\)
Bài 4 (3.0 điểm) : Tìm số nguyên tố \(\overline{ab}\) ( a > b > 0 ), sao cho \(\overline{ab}-\overline{ba}\) là số chính phương.
Ta có : \(\overline{ab}-\overline{ba}=\) (10a +b) \(-\) (10b +a) \(=\) 10a + b \(-\) 10b \(-\) a \(=\) 9a \(-\) 9b
\(=\) 9(a\(-\)b) \(=\) 32(a\(-\)b)
=> a, b ∉ {1;2;3;4;5;6;7;8;9} => 1 ≤ a- b ≤ 8
Để \(\overline{ab}-\)\(\overline{ba}\) là số chính phương thì a – b = 1; 4
+) a – b = 1 (mà a > b) ta có các số \(\overline{ab}\) là : 98 ; 87 ; 76; 65; 54 ; 43; 32; 21
Vì \(\overline{ab}\) là số nguyên tố nên chỉ có số 43 thoả mãn
+) a – b = 4 (mà a > b) ta có các số \(\overline{ab}\) là : 95 ; 84 ; 73; 62; 51
Vì \(\overline{ab}\) là số nguyên tố nên chỉ có số 73 thoả mãn
Vậy có hai số thoả mãn điều kiện bài toán là 43 và 73
Tìm số tự nhiên \(\overline{ab}\) sao cho \(\overline{ab}-\overline{ba}\) = 72
Theo đề bài, ta có:
10a+b- (10b+a)=72\(\Leftrightarrow\)9a-9b=72 \(\Leftrightarrow\) a-b = 8 =>a = 8+b
Mà a,b là số tự nhiên <9 và >1 => 8+b <9
=> b = 1, a = 9
Vậy số tự nhiên \(\overline{ab}\)=91
Theo bài ra, ta có: \(\overline{ab}\) - \(\overline{ba}\)
= 10a + b - (10b + a)
= 10a + b - 10b - a
= 9a - 9b = 9(a - b) = 72
\(\Rightarrow\) a - b = 72 : 9 = 8
\(\Rightarrow\) a = 8 + b
Mà a \(\le\) 9 \(\Rightarrow\) 8 + b \(\le\) 9 \(\Rightarrow\) b = 1; a = 9
Vậy \(\overline{ab}\) = 91
Tìm số tự nhiên \(\overline{ab}\) sao cho \(\overline{ab}-\overline{ba}=72\) ?
Ta có : \(\overline{ab}-\overline{ba}=72\Rightarrow\left(10a+b\right)-\left(10b+a\right)=72\)
\(\Rightarrow10a+b-10b-a=72\)
\(\Rightarrow10a-10b+b-a=72\)
\(\Rightarrow10\left(a-b\right)-a+b=72\)
\(\Rightarrow10\left(a-b\right)-\left(a-b\right)=72\)
\(\Rightarrow\left(10-1\right)\left(a-b\right)=72\Rightarrow9\left(a-b\right)=72\)
\(\Rightarrow a-b=72\div9\Rightarrow a-b=8\)
Vì : a,b là chữ số \(\Rightarrow0< a,b\le9\)
Mà : a - b = 8 \(\Rightarrow\left\{{}\begin{matrix}a=9\\b=1\end{matrix}\right.\)
Vậy số tự nhiên \(\overline{ab}\) cần tìm là 91
Tìm số có 2 chữ số ab biết:
a) \(\overline{ab}\) + \(\overline{ba}\) = 132 và \(\overline{ab}\) - \(\overline{ba}\) = \(\overline{3}\)*
b) \(\overline{ab}\) : (a - b) = 11 (dư 4) và \(\overline{ab}\) chia hết cho 9
c) \(\overline{ab}\) : (a + b) = 8 (dư 2)
d) 2 = 2 x \(\overline{ba}\) + 2
Tìm số nguyên tố \(\overline{ab}\) . ( a > b > 0 ) , sao cho \(\overline{ab}-\overline{ba}\) là số chính phương.
Bạn tham khảo link này nhé !
Câu hỏi của Nguyễn Triệu Yến Nhi - Toán lớp 6 - Học toán với OlineMath.
Câu hỏi của Hatsune Miku - Toán lớp 6 - Học toán với OnlineMath.
tìm các số có 2 chữ số \(\overline{ab}\) sao cho số n=\(\overline{ab}-\overline{ba}\) là 1 số chính phương
tìm \(\overline{abcde}\) biết \(\overline{abcde}\) = 2.\(\overline{ab}\).\(\overline{cde}\)
Đáp án:
hoặc
Giải thích các bước giải:
Do
nhỏ nhất là
Ước dương của
Do lẻ và
Vậy số thoả mãn là hoặc
Tìm các số tự nhiên có dạng \(\overline{abba}\)thỏa mãn điều kiện :
\(\overline{abba=}\overline{ab^2+}\overline{ba^2+a}-b\)
Tìm số có 2 chữ số\(\overline{ab}\)và chữ số * biết :
\(\overline{ab}\)chia 5 dư 1 và \(\overline{ab}\)-\(\overline{ba}\)=3*
Giúp tui ik
ta có :ab/5 dư 1 => b=1 hoặc 6
Trường hợp 1 :a1-1a=3* => a=5 ;*=6 (thỏa mãn)
Trường hợp 2 :a6-6a=3* ta thấy không có số a nào thỏa mãn
Vậy ab=51 ;*=6