Violympic toán 6

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Bài 4 (3.0 điểm) : Tìm số nguyên tố \(\overline{ab}\)  ( a > b > 0 ), sao cho \(\overline{ab}-\overline{ba}\) là số chính phương.

Ta có : \(\overline{ab}-\overline{ba}=\) (10a +b) \(-\) (10b +a) \(=\) 10a + b \(-\) 10b \(-\) a \(=\) 9a \(-\) 9b 

\(=\) 9(a\(-\)b) \(=\) 32(a\(-\)b)

=> a, b ∉ {1;2;3;4;5;6;7;8;9} => 1 ≤ a- b ≤ 8 

Để \(\overline{ab}-\)\(\overline{ba}\) là số chính phương thì a – b = 1; 4

+) a – b = 1 (mà a > b) ta có các số \(\overline{ab}\) là : 98 ; 87 ; 76; 65; 54 ; 43; 32; 21

\(\overline{ab}\) là số nguyên tố nên chỉ có số 43 thoả mãn

+) a – b = 4 (mà a > b) ta có các số \(\overline{ab}\) là : 95 ; 84 ; 73; 62; 51

\(\overline{ab}\) là số nguyên tố nên chỉ có số 73 thoả mãn

Vậy có hai số thoả mãn điều kiện bài toán là 43 và 73