chứng minh đa thức x2+4x+5 ko có nghiệm
Chứng tỏ các đa thức sau ko có nghiệm
a, x2 + 4x +10
b, x2 - 2x + 5
a, \(x^2\) + 4\(x\) + 10
= ( \(x^2\) + 4\(x\) + 4) + 6
= (\(x\) + 2)2 + 6
vì (\(x\) + 2)2 ≥ 0
⇒ (\(x\) + 2)2 + 6 ≥ 6 > 0 vậy đa thức đã cho vô nghiệm (đpcm)
b, \(x^2\) - 2\(x\) + 5
= (\(x^2\) - 2\(x\) + 1) + 4
= (\(x\) - 1)2 + 4
Vì (\(x\) - 1)2 ≥ 0 ⇒ (\(x\) -1)2 + 4≥ 4 > 0
Vậy đa thức đã cho vô nghiệm (đpcm)
chứng minh đa thức : x² + 4x⁴ + 10 ko có nghiệm
\(\left(2x^2\right)^2+2.2x^2.\dfrac{1}{4}+\dfrac{1}{16}+\dfrac{159}{16}\)
\(=\left(2x^2+\dfrac{1}{4}\right)^2+\dfrac{159}{16}>0\forall x\left(Vì\left(2x^2+\dfrac{1}{4}\right)^2\ge0\forall x\right)\)
⇒ pt vô nghiệm
Câu 1 : Cho đa thức : P(x) = x^2 + 2x +2
Chứng minh rằng đa thức đã cho ko có nghiệm.
Câu 2 : Cho đa thức : P(x) = 2 ( x-3)^2 + 5
Chứng minh rằng đa thức đã cho ko có nghiệm.
Câu 3 : Cho đa thức : P(x) = -x^4x-7
Chứng minh rằng đa thức đã cho ko có nghiệm.
Câu 1:
Ta có:
\(P\left(x\right)=x^2+2x+2\\ P\left(x\right)=\left(x^2+x\right)+\left(x+1\right)+1\\ P\left(x\right)=x\left(x+1\right)+\left(x+1\right)+1\\ P\left(x\right)=\left(x+1\right)\left(x+1\right)+1\\ P\left(x\right)=\left(x+1\right)^2+1\)
Vì \(\left(x+1\right)^2\ge0\)
nên\(\left(x+1\right)^2+1\ge1\)
\(\Rightarrow P\left(x\right)\ge1\ne0\)
Vậy đa thức \(P\left(x\right)\) không có nghiệm
Câu 2:
Ta có:
\(\left(x-3\right)^2\ge0\\ \Rightarrow2\left(x-3\right)^2\ge0\\ \Rightarrow2\left(x-3\right)^2+5\ge5\ne0\\ \Rightarrow P\left(x\right)\ne0\)
Vậy đa thức \(P\left(x\right)\) không có nghiệm.
Câu 3:
Vì \(4x⋮2\) nên \(4x\) nên là số chẵn.
\(\Rightarrow x^{4x}\ge0\\\Rightarrow-x^{4x}\le0\\ \Rightarrow-x^{4x}-7\le-7\ne0\\ \Rightarrow P\left(x\right)\ne0 \)
Vậy đa thức \(P\left(x\right)\) không có nghiệm.
cho đa thức q(x)= 3x^4+4x+1
chứng minh đa thức q(x) ko có nghiệm dương
chứng tỏ đa thức p(x)=-5-4x^2 ko có nghiệm
Có: \(-5-4x^2=0\)
\(5+4x^2=0\)
\(4x^2=-5\left(vl\right)\)
=> Đa thức vô nghiệm
Ta cho: P\(_{\left(x\right)}\)=\(-5-4x^2=0\)
\(4x^2=-5-0\)
\(4x^2-5\)
\(x^2\)=\(\dfrac{-5}{4}\)
Vì không có số nào bình phương là số âm
=> Đa thức \(P_{\left(x\right)}\)không có nghiệm
cho \(P\left(x\right)=0\)
\(=>-5-4x^2=0\)
\(=>4x^2=-5\)(vô lí)
vậy đa thức \(P\left(x\right)\)vô nghiệm(đpcm)
a) Kiểm tra xem 1,-2,1/2 có phải là nghiệm của đa thức P(x)= x^3 - x^2 - 4x + 4 hay ko?
b) Chứng minh rằng đa thức P(x)= 5x^3 - 7x^2 + 4x -2 có một nghiệm là 1
a: \(P\left(1\right)=1^3-1^2-4\cdot1+4=-4+4=0\)
=>x=1 là nghiệm của P(x)
\(P\left(-2\right)=\left(-2\right)^3-\left(-2\right)^2-4\cdot\left(-2\right)+4=-8-4+8+4=0\)
=>x=-2 là nghiệm của P(x)
b: \(P\left(1\right)=5\cdot1^3-7\cdot1^2+4\cdot1-2=5-7+4-2=0\)
=>x=1 là nghiệm của P(x)
chứng tỏ đa thức B(x)=x^2+4x+5 ko có nghiệm
Ta có:
x2 + 4x + 5
= x2 + 2.2x + 22 + 1
= (x + 2)2 + 1
Do (x + 2)2 ≥ 0 ∀ x
=> (x + 2)2 + 1 ≥1 ∀ x
Vậy x2 + 4x + 5 không có nhiệm
1/ Chứng minh M(x)= -x2 + 5 không có nghiệm.
2/ Tìm hệ số a của đa thức M(x)= a x2 + 5 x - 3, biết rằng đa thức này có một nghiệm là \(\dfrac{1}{2}\)
a/ \(M\left(x\right)=-x^2+5\)
Có \(-x^2\le0\forall x\)
=> \(M\left(x\right)\le5\forall x\)
=> M(x) không có nghiệm.
2/
Thay \(x=\dfrac{1}{2}\) vào đa thức M(x) có
\(M\left(\dfrac{1}{2}\right)=\dfrac{1}{4}a+\dfrac{5}{2}-3=0\)
\(\Leftrightarrow\dfrac{1}{4}a=\dfrac{1}{2}\)
\(\Leftrightarrow a=2\)
Vậy...
1.Tìm nghiệm đa thức
1)6x3 - 2x2
2)|3x + 7| + |2x2 - 2|
2.Chứng minh đa thức ko có nghiệm
1)x2 + 2x + 4
2)3x2 - x + 5
3.Tìm các hệ số a, b, c, d của đa thức f(x) = ax3 + bx2+ cx + d
Biết f(0)=5; f(1)=4; f(2)=31; f(3)=88
Bài 1:
1.
$6x^3-2x^2=0$
$2x^2(3x-1)=0$
$\Rightarrow 2x^2=0$ hoặc $3x-1=0$
$\Rightarrow x=0$ hoặc $x=\frac{1}{3}$
Đây chính là 2 nghiệm của đa thức
2.
$|3x+7|\geq 0$
$|2x^2-2|\geq 0$
Để tổng 2 số bằng $0$ thì: $|3x+7|=|2x^2-2|=0$
$\Rightarrow x=\frac{-7}{3}$ và $x=\pm 1$ (vô lý)
Vậy đa thức vô nghiệm.
Bài 2:
1. $x^2+2x+4=(x^2+2x+1)+3=(x+1)^2+3$
Do $(x+1)^2\geq 0$ với mọi $x$ nên $x^2+2x+4=(x+1)^2+3\geq 3>0$ với mọi $x$
$\Rightarrow x^2+2x+4\neq 0$ với mọi $x$
Do đó đa thức vô nghiệm
2.
$3x^2-x+5=2x^2+(x^2-x+\frac{1}{4})+\frac{19}{4}$
$=2x^2+(x-\frac{1}{2})^2+\frac{19}{4}\geq 0+0+\frac{19}{4}>0$ với mọi $x$
Vậy đa thức khác 0 với mọi $x$
Do đó đa thức không có nghiệm.
Bài 3:
$f(0)=a.0^3+b.0^2+c.0+d=d=5$
$f(1)=a+b+c+d=4$
$a+b+c=4-d=-1(*)$
$f(2)=8a+4b+2c+d=31$
$8a+4b+2c=31-d=26$
$4a+2b+c=13(**)$
$f(3)=27a+9b+3c+d=88$
$27a+9b+3c=88-d=83(***)$
Từ $(*); (**); (***)$ suy ra $a=\frac{1}{3}; b=13; c=\frac{-43}{3}$
Vậy.......