Chứng minh bất đẳng thức sau:
\(1+\dfrac{1}{1.2}+\dfrac{1}{1.2.3}+...+\dfrac{1}{1.2.3.....n}< 2\)
Chứng minh BĐT sau
a)\(\dfrac{1}{1.3}+\dfrac{1}{3.5}+...+\dfrac{1}{\left(2n-1\right)\left(2n+1\right)}< \dfrac{1}{2}\)
b)
a)
\(\dfrac{1}{1.3}+\dfrac{1}{3.5}+...+\dfrac{1}{\left(2n-1\right)\left(2n+1\right)}=\dfrac{1}{2}\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2n-1}-\dfrac{1}{2n+1}\right)=\dfrac{1}{2}\left(1-\dfrac{1}{2n+1}\right)< \dfrac{1}{2}\)
P/s: Cj chỉ biết làm ý a thôi nhé! Có j ko hiểu cmt nhé!
Cho S = \(\dfrac{1}{1.2}+\dfrac{2}{1.2.3}+\dfrac{3}{1.2.3.4}+....+\dfrac{99}{1.2.3.....99.100}\)
Chứng minh rằng : S<1
\(S=\dfrac{1}{1.2}+\dfrac{2}{1.2.3}+........+\dfrac{99}{1.2.......100}\)
\(=\dfrac{1}{2!}+\dfrac{2}{3!}+....+\dfrac{99}{100!}\)
\(=\dfrac{2-1}{2!}+\dfrac{3-1}{3!}+.......+\dfrac{100-1}{100!}\)
\(=\dfrac{1}{1}-\dfrac{1}{2!}+\dfrac{1}{2!}-\dfrac{1}{3!}+....+\dfrac{1}{99!}-\dfrac{1}{100!}\)
\(=1-\dfrac{1}{100!}< 1\)
\(\Leftrightarrow S< 1\left(đpcm\right)\)
A=\(\left(1-\dfrac{1}{1.2}\right)\left(1-\dfrac{1}{1.2.3}\right).........\left(1-\dfrac{1}{1.2.3....n}\right)\)
cmr:\(\dfrac{1}{1.2}+\dfrac{2}{1.2.3}+....+\dfrac{2011}{1.2.3....2012}< 1\)
Lời giải:
\(A=\frac{1}{1.2}+\frac{2}{1.2.3}+\frac{3}{1.2.3.4}+...+\frac{2011}{1.2.3...2012}\)
\(=\frac{2-1}{1.2}+\frac{3-1}{1.2.3}+\frac{4-1}{1.2.3.4}+...+\frac{2012-1}{1.2.3...2012}\)
\(=1-\frac{1}{1.2}+\frac{1}{1.2}-\frac{1}{1.2.3}+\frac{1}{1.2.3}-\frac{1}{1.2.3.4}+...+\frac{1}{1.2.3...2011}-\frac{1}{1.2.3...2012}\)
\(=1-\frac{1}{1.2...2012}< 1\)
Ta có đpcm.
Chứng tỏ: \(\dfrac{1}{1.2}\) + \(\dfrac{1}{1.2.3}\) +\(\dfrac{1}{1.2.3.4}\)+.......+\(\dfrac{1}{1.2.3........100}\) <1
cmr:\(\dfrac{1}{1.2}+\dfrac{2}{1.2.3}+\dfrac{3}{1.2.3.4}+....+\dfrac{2011}{1.2...2012}< 1\)
Cho A=\(\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+...+\dfrac{1}{98.99.100}\)
Chứng minh A<2
Bằng phương pháp quy nạp, chứng minh các đẳng thức sau với \(n\in N^{\circledast}\)
a) \(A_n=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+....+\dfrac{1}{n\left(n+1\right)\left(n+2\right)}=\dfrac{n\left(n+3\right)}{4\left(n+1\right)}\)
b) \(B_n=1+3+6+10+...+\dfrac{n\left(n+1\right)}{2}=\dfrac{n\left(n+1\right)\left(n+2\right)}{6}\)
c) \(S_n=\sin x+\sin2x+\sin3x+...+\sin nx=\dfrac{\sin\dfrac{nx}{2}\sin\dfrac{\left(n+1\right)x}{2}}{\sin\dfrac{x}{2}}\)
b)
Với n = 1.
\(VT=B_n=1;VP=\dfrac{1\left(1+1\right)\left(1+2\right)}{6}=1\).
Vậy với n = 1 điều cần chứng minh đúng.
Giả sử nó đúng với n = k.
Nghĩa là: \(B_k=\dfrac{k\left(k+1\right)\left(k+2\right)}{6}\).
Ta sẽ chứng minh nó đúng với \(n=k+1\).
Nghĩa là:
\(B_{k+1}=\dfrac{\left(k+1\right)\left(k+1+1\right)\left(k+1+2\right)}{6}\)\(=\dfrac{\left(k+1\right)\left(k+2\right)\left(k+3\right)}{6}\).
Thật vậy:
\(B_{k+1}=B_k+\dfrac{\left(k+1\right)\left(k+2\right)}{2}\)\(=\dfrac{k\left(k+1\right)\left(k+2\right)}{6}+\dfrac{\left(k+1\right)\left(k+2\right)}{2}\)\(=\dfrac{\left(k+1\right)\left(k+2\right)\left(k+3\right)}{6}\).
Vậy điều cần chứng minh đúng với mọi n.
c)
Với \(n=1\)
\(VT=S_n=sinx\); \(VP=\dfrac{sin\dfrac{x}{2}sin\dfrac{2}{2}x}{sin\dfrac{x}{2}}=sinx\)
Vậy điều cần chứng minh đúng với \(n=1\).
Giả sử điều cần chứng minh đúng với \(n=k\).
Nghĩa là: \(S_k=\dfrac{sin\dfrac{kx}{2}sin\dfrac{\left(k+1\right)x}{2}}{sin\dfrac{x}{2}}\).
Ta cần chứng minh nó đúng với \(n=k+1\):
Nghĩa là: \(S_{k+1}=\dfrac{sin\dfrac{\left(k+1\right)x}{2}sin\dfrac{\left(k+2\right)x}{2}}{sin\dfrac{x}{2}}\).
Thật vậy từ giả thiết quy nạp ta có:
\(S_{k+1}-S_k\)\(=\dfrac{sin\dfrac{\left(k+1\right)x}{2}sin\dfrac{\left(k+2\right)x}{2}}{sin\dfrac{x}{2}}-\dfrac{sin\dfrac{kx}{2}sin\dfrac{\left(k+1\right)x}{2}}{sin\dfrac{x}{2}}\)
\(=\dfrac{sin\dfrac{\left(k+1\right)x}{2}}{sin\dfrac{x}{2}}.\left[sin\dfrac{\left(k+2\right)x}{2}-sin\dfrac{kx}{2}\right]\)
\(=\dfrac{sin\dfrac{\left(k+1\right)x}{2}}{sin\dfrac{x}{2}}.2cos\dfrac{\left(k+1\right)x}{2}sim\dfrac{x}{2}\)\(=2sin\dfrac{\left(k+1\right)x}{2}cos\dfrac{\left(k+1\right)x}{2}=2sin\left(k+1\right)x\).
Vì vậy \(S_{k+1}=S_k+sin\left(k+1\right)x\).
Vậy điều cần chứng minh đúng với mọi n.
Chứng minh Bất đẳng thức sau:\(\dfrac{1}{1+a^2}+\dfrac{1}{1+b^2}\ge\dfrac{2}{1+ab}\)