cmr:\(\dfrac{1}{1.2}+\dfrac{2}{1.2.3}+....+\dfrac{2011}{1.2.3....2012}< 1\)
cmr:
CMR biểu thức \(N=\sqrt{1+2011^2+\dfrac{2011^2}{2012^2}}+\dfrac{2011}{2012}\) có giá trị là 1 số tự nhiên
cho \(f\left(x\right)=\dfrac{x^3}{1-3x-3x^2}\). hãy tính giá trị biểu thức sau: \(A=f\left(\dfrac{1}{2012}\right)+f\left(\dfrac{2}{2012}\right)+...+f\left(\dfrac{2010}{2012}\right)+f\left(\dfrac{2011}{2012}\right)\)
Tìm x,y,z thỏa mãn
\(\dfrac{\sqrt{x-2010}-1}{x-2010}+\dfrac{\sqrt{y-2011}-1}{y-2011}+\dfrac{\sqrt{z-2012}-1}{z-2012}=\dfrac{3}{4}\)
Cho \(A=\dfrac{1}{1.2}+\dfrac{1}{3.4}+....+\dfrac{1}{2017.2018}\) và \(B=\dfrac{1}{1010.2018}+\dfrac{1}{1011.2017}+...+\dfrac{1}{2018.1010}\). C/m A/B là 1 số nguyên
cho \(f\left(x\right)=\dfrac{x^3}{1-3x+3x^2}\) hãy tính giá trị của biểu thức sau:
\(A=f\left(\dfrac{1}{2012}\right)+f\left(\dfrac{2}{2012}\right)+...+f\left(\dfrac{2010}{2012}\right)+f\left(\dfrac{2011}{2012}\right)\)
cmr:\(a=1.2.3...2003.2004.\left(1+\dfrac{1}{2}+\dfrac{1}{2}+...+\dfrac{1}{2003}+\dfrac{1}{2004}\right)\)chia hết cho 2005
Cho các số dương a, b, c thỏa mãn: \(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}=\sqrt{2011}\). CMR: \(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}++\dfrac{c^2}{a+b}\ge\dfrac{1}{2}\sqrt{\dfrac{2011}{2}}\)