cmr:a=\(1.2.3...2003.2004.\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2003}+\dfrac{1}{2004}\right)⋮2005\)
cho a,b,c>0, CMR:
\(\left(a+b+\dfrac{1}{4}\right)^2+\left(b+c+\dfrac{1}{4}\right)^2+\left(c+a+\dfrac{1}{4}\right)^2\ge4\left(\dfrac{1}{\dfrac{1}{a}+\dfrac{1}{b}}+\dfrac{1}{\dfrac{1}{b}+\dfrac{1}{c}}+\dfrac{1}{\dfrac{1}{c}+\dfrac{1}{a}}\right)\)
Chứng minh: \(A=1.2.3.....2017.2018\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2018}\right)⋮2019\)
Tìm số tự nhiên n sao cho:
\(\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}+....+\dfrac{1}{n\left(n+1\right)\left(n+2\right)}=\dfrac{637}{2550}\)
Cho \(a,b,c\ge1\). CMR:
\(a\left(b+c\right)+b\left(c+a\right)+c\left(a+b\right)+2\left(\dfrac{1}{a^2+1}+\dfrac{1}{b^2+1}+\dfrac{1}{c^2+1}\right)\ge9\)
Với mọi a,b,c . CMR
\(-\dfrac{1}{2}\le\dfrac{\left(a+b\right)\left(1-ab\right)}{\left(a^2+1\right)\left(b^2+1\right)}\le\dfrac{1}{2}\)
B1. Cho a, b, c là số dương. CMR:
\(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\ge\dfrac{a+b+c}{2}\)
B2. Cho a,b,c > 0 và a+b+c=1. cmr
\(\left(1+\dfrac{1}{a}\right)\left(1+\dfrac{1}{b}\right)\left(1+\dfrac{1}{c}\right)\ge64\)
help me!! cần gấp
Cho a, b, c là độ dài 3 cạnh tam giác. CMR:
1, \(\dfrac{1}{\left(a+b-c\right)^n}+\dfrac{1}{\left(a-b+c\right)^n}+\dfrac{1}{\left(b+c-a\right)^n}\ge\dfrac{1}{a^n}+\dfrac{1}{b^n}+\dfrac{1}{c^n}\)
2, \(\dfrac{1}{a^n}+\dfrac{1}{b^n}+\dfrac{1}{c^n}\ge4^n\left[\dfrac{1}{\left(2a+b+c\right)^n}+\dfrac{1}{\left(a+2b+c\right)^n}+\dfrac{1}{\left(a+b+2c\right)^n}\right]\)
1.a,b,c là các số thực dương. CM \(\left(\dfrac{\sqrt{ab}}{\sqrt{a+b}}+\dfrac{\sqrt{bc}}{\sqrt{b+c}}\right)\left(\dfrac{1}{\sqrt{a+b}}+\dfrac{1}{\sqrt{b+c}}\right)\le2\)
2. x,y là các số nguyên sao cho \(x^2-2xy-y^2\) ;\(xy-2y^2-x\) đều chia hết cho 5Chứng minh \(2x^2+y^2+2x+y\) cũng chia hết cho 5
3. cho \(a_1a_2...a_{50}\) là các số nguyên thoả mãn \(1\le a_1\le a_2...\le a_{50}\le50;a_1+a_2+...+a_{50}=100\) chứng minh rằng từ các số đã cho có thể chọn đc một vài số có tổng là 50