Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Gay\

Chứng minh: \(A=1.2.3.....2017.2018\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2018}\right)⋮2019\)

Trần Minh Hoàng
17 tháng 1 2021 lúc 10:50

\(A=1.2.3...2018\left[\left(1+\dfrac{1}{2018}\right)+\left(\dfrac{1}{2}+\dfrac{1}{2017}\right)+...+\left(\dfrac{1}{1009}+\dfrac{1}{1010}\right)\right]\)

\(A=1.2.3...2018.2019\left(\dfrac{1}{1.2018}+\dfrac{1}{2.2017}+...+\dfrac{1}{1009.1010}\right)\)

\(\dfrac{A}{2019}=1.2.3...2018\left(\dfrac{1}{1.2018}+\dfrac{1}{2.2017}+...+\dfrac{1}{1009.1010}\right)\).

Rõ ràng tích 1 . 2 ... 2018 chia hết cho các tích 1 . 2018; 2 . 2017; ...; 1009 . 1010; do đó \(\dfrac{A}{2019}\) là số tự nhiên.

Vậy A chia hết cho 2019.


Các câu hỏi tương tự
Cô Pê
Xem chi tiết
Felix MC-Gamer
Xem chi tiết
poppy Trang
Xem chi tiết
Nguyễn Thị Cẩm Nhi
Xem chi tiết
Hày Cưi
Xem chi tiết
Hoàng Ngọc Tuyết Nung
Xem chi tiết
Hoàng Ngọc Tuyết Nung
Xem chi tiết
EDOGAWA CONAN
Xem chi tiết
Nguyễn Thu Trà
Xem chi tiết