tìm hai số nguyên tố p và q sao cho \(\dfrac{46}{p}+\dfrac{46}{q}=\dfrac{46}{p}.\dfrac{46}{q}\)
Tìm tất cả các nguyên tố P và Q thõa mãn
\(\dfrac{46}{P}\) + \(\dfrac{46}{Q}\) = \(\dfrac{46}{P}\) . \(\dfrac{46}{Q}\)
Lời giải:
Ta có:
\(\frac{46}{P}+\frac{46}{Q}=\frac{46}{P}.\frac{46}{Q}\)
\(\Leftrightarrow \frac{1}{P}+\frac{1}{Q}=\frac{46}{P.Q}\)
\(\Leftrightarrow \frac{P+Q}{P.Q}=\frac{46}{P.Q}\Leftrightarrow P+Q=46\)
Không mất tổng quát giả sử \(P\geq Q\Rightarrow 46=P+Q\geq 2Q\)
\(\Leftrightarrow Q\leq 23\).
Vì \(Q\in\mathbb{P}\Rightarrow Q\in\left\{2;3;5;7;11;13;17;19;23\right\}\)
\(\Rightarrow P\in\left\{44;43;41;39;35;33;29;27;23\right\}\) (theo thứ tự)
Mà \(P\in\mathbb{P}\Rightarrow P\in\left\{43;41;29;23\right\}\)
Vậy các bộ số (P,Q) thỏa mãn là:
\(\left\{(3;43);(5;41);(17;29);(23,23)\right\}\) và hoán vị từng bộ.
BT2: Tính nhanh:
5) \(\dfrac{15}{7}\left(\dfrac{1}{5}-\dfrac{46}{45}\right)+\dfrac{46}{45}\left(\dfrac{15}{7}-\dfrac{45}{46}\right)\)
6) \(\dfrac{43}{47}\left(\dfrac{18}{37}+\dfrac{47}{43}\right)-\dfrac{18}{37}\left(\dfrac{43}{47}+\dfrac{37}{36}\right)\)
1/Ta co :
\(\dfrac{15}{7}.\left(\dfrac{1}{5}-\dfrac{46}{45}\right)+\dfrac{46}{45}.\left(\dfrac{15}{7}-\dfrac{45}{46}\right)\)
=\(\dfrac{15}{7}.\dfrac{1}{5}-\dfrac{15}{7}.\dfrac{46}{45}+\dfrac{46}{45}.\dfrac{15}{7}-\dfrac{46}{45}.\dfrac{45}{46}\)
=\(\dfrac{15}{7}.\left(\dfrac{1}{5}-\dfrac{46}{45}+\dfrac{46}{45}\right)-1\)
=\(\dfrac{15}{7}.\dfrac{1}{5}-1\)
=\(\dfrac{3}{7}-1=\dfrac{-4}{7}\)
2/Ta co
\(\dfrac{43}{47}.\left(\dfrac{18}{37}+\dfrac{47}{43}\right)-\dfrac{18}{3}.\left(\dfrac{43}{47}+\dfrac{37}{36}\right)\)
=\(\dfrac{43}{47}.\dfrac{18}{37}+\dfrac{43}{47}.\dfrac{47}{43}-\dfrac{18}{37}.\dfrac{43}{47}+\dfrac{18}{37}.\dfrac{37}{36}\)
=\(\dfrac{18}{37}.\left(\dfrac{43}{37}-\dfrac{43}{37}+\dfrac{37}{36}\right)+1\)
=\(\dfrac{18}{37}.\dfrac{37}{36}+1\)
=\(\dfrac{1}{2}+1=\dfrac{3}{2}\)
tick cho mk nha
Cho A=\(\dfrac{1}{4}\).\(\dfrac{3}{6}\).\(\dfrac{5}{8}\). ... .\(\dfrac{43}{46}\).\(\dfrac{45}{48}\)
B =\(\dfrac{2}{5}\).\(\dfrac{4}{7}\).\(\dfrac{6}{9}\). ... .\(\dfrac{44}{47}\).\(\dfrac{46}{49}\)
a, So sánh A và B
B, Chứng minh A<\(\dfrac{1}{133}\)
help me, chiều mình đi học
So sánh các số sau
\(99^{20}\) và \(9999^{10}\)
\(\left|\dfrac{-25}{46}\right|\) và \(\left(\dfrac{-25}{46}\right)^{2005}\)
\(\left\{{}\begin{matrix}99^{29}=\left(99^2\right)^{10}=9801^{10}\\9999^{10}=9999^{10}\end{matrix}\right.\)
\(9801^{10}< 9999^{10}\Leftrightarrow99^{20}< 9999^{10}\)
\(\left\{{}\begin{matrix}\left|-\dfrac{25}{46}\right|=\dfrac{25}{46}>0\\\left(-\dfrac{25}{46}\right)^{2005}< 0\end{matrix}\right.\)
\(\Rightarrow\left(-\dfrac{25}{46}\right)^{2005}< \left|-\dfrac{25}{46}\right|\)
a/ Ta có :
\(99^{20}=\left(99^2\right)^{10}=9081^{10}\)
Vì \(9081^{10}< 9999^{10}\Leftrightarrow99^{20}< 9999^{10}\)
b/ Ta có :
\(\left|\dfrac{-25}{46}\right|=\dfrac{25}{46}>0\)
\(\left(\dfrac{-25}{46}\right)^{2005}< 0\)
\(\Leftrightarrow\left|\dfrac{-25}{46}\right|>\left(\dfrac{-25}{46}\right)^{2005}\)
a) Ta có: \(99^{20}=\left(99^2\right)^{10}=\left(99.99\right)^{10}\)
\(9999^{10}=\left(99.101\right)^{10}\)
Rõ ràng ta thấy:
\(99.99< 99.101\)
Nên \(\left(99.99\right)^{10}< \left(99.101\right)^{10}\)
Vậy \(99^{20}< 9999^{10}\)
b) Ta có: \(\left|-\dfrac{25}{46}\right|=\dfrac{25}{46}>0\)
\(\left(-\dfrac{25}{46}\right)^{2005}< 0\) (theo tính chất số mũ của số hữu tỉ)
Vậy \(\left|-\dfrac{25}{46}\right|>\left(-\dfrac{25}{46}\right)^{2005}\)
Tìm tất cả các số nguyên tố p,q thảo mãn đẳng thúc 46/p+46/q=46/p.46/q
P=\(\dfrac{1}{1\cdot2}\)+\(\dfrac{2}{2\cdot4}\)+\(\dfrac{3}{4\cdot7}\)+...+\(\dfrac{10}{46\cdot56}\)
\(P=\dfrac{1}{1.2}+\dfrac{2}{2.4}+\dfrac{3}{4.7}+...+\dfrac{10}{46.56}\)
\(=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{46}-\dfrac{1}{56}\)
\(=1-\dfrac{1}{56}=\dfrac{55}{56}\)
3\(\dfrac{1}{11}\) * \(\dfrac{27}{46}\) * 1\(\dfrac{6}{17}\) * 2\(\dfrac{4}{9}\) =
\(=\dfrac{34}{11}\cdot\dfrac{23}{17}\cdot\dfrac{27}{46}\cdot\dfrac{22}{9}=\dfrac{34}{17}\cdot\dfrac{23}{11}\cdot\dfrac{22}{46}\cdot\dfrac{27}{9}\)
\(=2\cdot3\cdot\dfrac{1}{2}\cdot2=6\)
\(\dfrac{x-1}{2}=\dfrac{y+3}{4}=\dfrac{z-5}{3}và5x-3y-4z=46\)
Tìm x là số nguyên
\(\dfrac{x+46}{20}=x\dfrac{2}{5}\)(\(x\dfrac{2}{5}\)là hỗn số)
\(\dfrac{x+46}{20}=x\dfrac{2}{5}\)
\(\Rightarrow\dfrac{x+46}{20}=\dfrac{5x+2}{5}\)
\(\Leftrightarrow5\cdot\left(x+46\right)=20\cdot\left(5x+2\right)\)
\(\Leftrightarrow100x+40-5x-230=0\)
\(\Leftrightarrow95x-190=0\)
\(\Leftrightarrow x=2\)