cho x,y,z là các số lớn hơn hoặc bằng 1
CM:\(\dfrac{1}{1+x^2}+\dfrac{1}{1+y^2}\ge\dfrac{2}{1+xy}\)
Cho x,y,z là các số lớn hơn hoặc bằng 1. CMR:
\(\dfrac{1}{1+x^2}+\dfrac{1}{1+y^2}+\dfrac{1}{1+z^2}\ge\dfrac{2}{1+xy}\)
HELP ME!!!
Cho x, y, z là các số lớn hơn hoặc bằng 1. Chứng minh rằng:
\(\dfrac{1}{1+x^2}+\dfrac{1}{1+y^2}\ge\dfrac{2}{1+xy}\)
Cho x, y là các số lớn hơn hoặc bằng 1.
CMR : \(\dfrac{1}{1+x^2}+\dfrac{1}{1+y^2}\ge\dfrac{2}{1+xy}\)
Cho x , y , z lớn hơn hoặc bằng 1 . CMR :
\(\dfrac{1}{1+x^2}\) + \(\dfrac{1}{1+y^2}\) \(\ge\) \(\dfrac{2}{1+xy}\)
Ta có: \(\dfrac{1}{1+x^2}+\dfrac{1}{1+y^2}\ge\dfrac{2}{1+xy}\)
\(\Leftrightarrow\left(\dfrac{1}{1+x^2}-\dfrac{1}{1+y^2}\right)+\left(\dfrac{1}{1+y^2}-\dfrac{1}{xy}\right)\ge0\)
\(\Leftrightarrow\dfrac{xy-x^2}{\left(1+x^2\right)\left(1+xy\right)}+\dfrac{xy-y^2}{\left(1+y^2\right)\left(1+xy\right)}\ge0\)
\(\Leftrightarrow\dfrac{x\left(y-x\right)}{\left(1+x^2\right)\left(1+xy\right)}+\dfrac{y\left(x-y\right)}{\left(1+y^2\right)\left(1+xy\right)}\ge0\)
\(\Leftrightarrow\dfrac{\left(y-x\right)^2\left(xy-1\right)}{\left(1+x^2\right)\left(1+y^2\right)\left(1+xy\right)}\ge0\)
BĐT cuối đúng vì x.y > 0 => đpcm
1)
a, Cho x,y với xy lớn hơn hoặc bằng 0. Cm \(\left(x^2-y^2\right)^2\) lớn hơn hoặc bằng \(\left(x-y\right)^2\)
b, Cho \(x\cdot y\cdot z=1\) và \(x+y+z>\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\). Cm \(\left(x-1\right)\cdot\left(y-1\right)\cdot\left(z-1\right)>0\)
\(\left(x^2-y^2\right)^2=\left(x-y\right)^2\left(x+y\right)^2\) \(\Rightarrow\left\{{}\begin{matrix}x;y>0\\x+y< 1\end{matrix}\right.\)=> dccm sai = > người ra đề sai họăc người chép đề sai ;
1. Cho x,y,z>0 và \(\dfrac{1}{1+x}+\dfrac{1}{1+y}+\dfrac{1}{1+z}\) lớn hơn bằng 2. CM:
\(xyz\) nhỏ hơn bằng 1/8.
2. Cho x,y lớn hơn bằng 1: \(\dfrac{1}{1+x^2}+\dfrac{1}{1+y^2}\) lớn hơn bằng \(\dfrac{2}{1+xy}\)
a. CMR: Nếu x2+y2=1 thì -\(\sqrt{2}\) bé hơn hoặc bằng x+y bé hơn hoặc bằng \(\sqrt{2}\)
b.Cho x,y,z ∈R+.CMR:
\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\) lớn hơn hoặc bằng \(\dfrac{1}{\sqrt{xy}}+\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{xz}}\)
Cho x,y,z>0. CM: \(\dfrac{xy}{z^2\left(x+y\right)}+\dfrac{yz}{x^2\left(y+z\right)}+\dfrac{zx}{y^2\left(z+x\right)}\ge\dfrac{1}{2}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\)
\(VT=\dfrac{\left(\dfrac{1}{z}\right)^2}{\dfrac{1}{x}+\dfrac{1}{y}}+\dfrac{\left(\dfrac{1}{x}\right)^2}{\dfrac{1}{y}+\dfrac{1}{z}}+\dfrac{\left(\dfrac{1}{y}\right)^2}{\dfrac{1}{x}+\dfrac{1}{z}}\ge\dfrac{\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2}{2\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)}=\dfrac{1}{2}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\)
Dâu "=" xảy ra khi \(x=y=z\)
Cho x,y là các số lớn hơn hoặc bằng 1.Chứng minh rằng:
\(\dfrac{1}{1+x^2}+\dfrac{1}{1+y^2}\)\(\ge\dfrac{2}{1+xy}\)
Mọi người giúp mình với ạ!!!