\(\dfrac{2}{7}\)của \(\dfrac{63}{91}\)
\(\dfrac{1}{3}của45\) b) \(\dfrac{2}{7}của\dfrac{63}{91}\) \(23\%của200\) \(1\dfrac{2}{3}của3\dfrac{1}{4}\)
a) \(\dfrac{1}{3}\)của 45 = \(45.\dfrac{1}{3}=15\)
b) \(\dfrac{2}{7}\)của \(\dfrac{63}{91}\)= \(\dfrac{63}{91}.\dfrac{2}{7}=\dfrac{18}{91}\)
c) 23% của 200 = 200 . \(\dfrac{23}{100}\)= 46
d) \(1\dfrac{2}{3}\)của \(3\dfrac{1}{4}\)= \(3\dfrac{1}{4}.1\dfrac{2}{3}=\dfrac{65}{12}\)
Bn phân lại các phần đc k ? Nhìn hơi rối mắt.
Tính tổng
\(\dfrac{51}{53}+\dfrac{55}{57}+\dfrac{61}{63}+\dfrac{69}{71}+\dfrac{79}{81}+\dfrac{91}{93}\)
\(\dfrac{51}{53}+\dfrac{55}{57}+\dfrac{61}{63}+\dfrac{69}{71}+\dfrac{79}{81}+\dfrac{91}{93}\)
\(=\left(\dfrac{52}{53}-\dfrac{1}{53}\right)+\left(\dfrac{56}{57}-\dfrac{1}{57}\right)+\left(\dfrac{62}{63}-\dfrac{1}{63}\right)+\left(\dfrac{70}{71}-\dfrac{1}{71}\right)+\left(\dfrac{80}{81}-\dfrac{1}{81}\right)+\left(\dfrac{92}{93}-\dfrac{1}{93}\right)\)
\(=\left(1-\dfrac{1}{53}-\dfrac{1}{53}\right)+\left(1-\dfrac{1}{57}-\dfrac{1}{57}\right)+\left(1-\dfrac{1}{63}-\dfrac{1}{63}\right)+\left(1-\dfrac{1}{71}-\dfrac{1}{71}\right)+\left(1-\dfrac{1}{81}-\dfrac{1}{81}\right)+\left(1-\dfrac{1}{93}-\dfrac{1}{93}\right)\)
\(=\left(1-0\right)+\left(1-0\right)+\left(1-0\right)+\left(1-0\right)+\left(1-0\right)+\left(1-0\right)\)
\(=1+1+1+1+1+1\)
\(=6\)
Quy đồng mẫu các phân số
f) \(\dfrac{165}{270}\) ; \(\dfrac{91}{156}\) ; \(\dfrac{210}{1134}\)
g) \(\dfrac{21}{9}\) ; \(\dfrac{120}{50}\) ; \(\dfrac{63}{54}\)
h) \(\dfrac{75}{500}\) ; \(\dfrac{150}{90}\) ; \(\dfrac{250}{900}\)
bài 18: tìm 2 số tự nhiên a, b biết rằng a + b = 128 và ƯCLN (a,b) = 16
nhanh + chi tiết = tick
f, \(\dfrac{165}{270}\) = \(\dfrac{165:15}{270:15}\) = \(\dfrac{11}{18}\) = \(\dfrac{11\times6}{18\times6}\) = \(\dfrac{66}{108}\)
\(\dfrac{91}{156}\) = \(\dfrac{91:13}{156:13}\) = \(\dfrac{7}{12}\) = \(\dfrac{7\times9}{12\times9}\) = \(\dfrac{63}{108}\)
\(\dfrac{210}{1134}\) = \(\dfrac{210:42}{1134:42}\) = \(\dfrac{5}{27}\) = \(\dfrac{5\times4}{27\times4}\) = \(\dfrac{20}{108}\)
g, \(\dfrac{21}{9}\) = \(\dfrac{21:3}{9:3}\) = \(\dfrac{7}{3}\) = \(\dfrac{7\times10}{3\times10}\) = \(\dfrac{70}{30}\)
\(\dfrac{120}{50}\) = \(\dfrac{120:10}{50:10}\) = \(\dfrac{12}{5}\) = \(\dfrac{12\times6}{5\times6}\) = \(\dfrac{72}{30}\)
\(\dfrac{63}{54}\) = \(\dfrac{63:9}{54:9}\) = \(\dfrac{7}{6}\) = \(\dfrac{7\times5}{6\times5}\) = \(\dfrac{35}{30}\)
h, \(\dfrac{75}{100}\) = \(\dfrac{75:25}{100:4}\) = \(\dfrac{3}{4}\) = \(\dfrac{3\times9}{4\times6}\) = \(\dfrac{27}{36}\)
\(\dfrac{150}{90}\) = \(\dfrac{150:30}{90:30}\) = \(\dfrac{5}{3}\) = \(\dfrac{5\times12}{3\times12}\) = \(\dfrac{60}{36}\)
\(\dfrac{250}{900}\) = \(\dfrac{250:50}{900:50}\) = \(\dfrac{5}{18}\) = \(\dfrac{5\times2}{18\times2}\) = \(\dfrac{10}{36}\)
Tính nhanh :
\(A=\left(-\dfrac{5}{7}+\dfrac{8}{5}\right):\dfrac{91}{8}+\left(-\dfrac{2}{7}-\dfrac{3}{5}\right):\dfrac{91}{8}\)
\(B=\dfrac{13}{15}:\left(\dfrac{4}{5}-\dfrac{3}{7}\right)+\dfrac{13}{15}:\left(\dfrac{2}{5}-\dfrac{1}{9}\right)\)
(Gíup mình với )
\(A=\left(-\dfrac{5}{7}+\dfrac{8}{5}\right):\dfrac{91}{8}+\left(-\dfrac{2}{7}-\dfrac{3}{5}\right):\dfrac{91}{8}\)
\(=\dfrac{31}{35}:\dfrac{91}{8}+\dfrac{-31}{35}:\dfrac{91}{8}\)
\(=\dfrac{248}{3185}+\dfrac{-248}{3185}\)
= 0
\(B=\dfrac{13}{15}:\left(\dfrac{4}{5}-\dfrac{3}{7}\right)+\dfrac{13}{15}:\left(\dfrac{2}{5}-\dfrac{1}{9}\right)\)
\(=\dfrac{13}{15}:\dfrac{13}{35}+\dfrac{13}{15}:\dfrac{13}{45}\)
\(=\dfrac{7}{3}+3\)
\(=\dfrac{16}{3}\)
tính
a) \(\sqrt{\dfrac{3^2}{7^2}}\) b) \(\dfrac{\sqrt{3}^2+\sqrt{39}^2}{\sqrt{7}^2+\sqrt{91}^2}\) c) \(\dfrac{\sqrt{3}^2-\sqrt{39}^2}{\sqrt{7}^2-\sqrt{91}^2}\) d) \(\sqrt{\dfrac{39^2}{91^2}}\)
a)\(\sqrt{\dfrac{3^2}{7^2}}=\sqrt{\dfrac{9}{49}}=\sqrt{\dfrac{3}{7}}\)
b)\(\dfrac{\sqrt{3^2}+\sqrt{39^2}}{\sqrt{7^2}+\sqrt{91^2}}=\dfrac{\sqrt{9}+\sqrt{1521}}{\sqrt{49}+\sqrt{8281}}=\dfrac{3+39}{7+91}=\dfrac{42}{98}\)
c)Tương tự câu b, ta đc:
\(\dfrac{\sqrt{3^2}-\sqrt{39^2}}{\sqrt{7^2}-\sqrt{91^2}}=\dfrac{3-39}{7-91}=\dfrac{-36}{86}=\dfrac{3}{7}\)
d)Tương tự câu a, ta đc:
\(\dfrac{\sqrt{39^2}}{\sqrt{91^2}}=\dfrac{39}{91}\)
Chúc Bạn Học Tốt!!!
a) \(\sqrt{\dfrac{3^2}{7^2}}=\sqrt{\left(\dfrac{3}{7}\right)^2}=\left|\dfrac{3}{7}\right|=\dfrac{3}{7}\)
b) \(\dfrac{\sqrt{3}^2+\sqrt{39}^2}{\sqrt{7}^2+\sqrt{91}^2}=\dfrac{\left|3\right|+\left|39\right|}{\left|7\right|+\left|91\right|}=\dfrac{3+39}{7+91}=\dfrac{42}{98}=\dfrac{3}{7}\)
c) \(\dfrac{\sqrt{3}^2-\sqrt{39}^2}{\sqrt{7}^2-\sqrt{91}^2}=\dfrac{\left|3\right|- \left|39\right|}{\left|7\right|-\left|91\right|}=\dfrac{3-39}{7-91}=\dfrac{-36}{-84}=\dfrac{3}{7}\)
d) \(\sqrt{\dfrac{39^2}{91^2}}=\sqrt{\left(\dfrac{39}{91}\right)^2}=\left|\dfrac{39}{91}\right|=\dfrac{39}{91}=\dfrac{3}{7}\)
\(2\dfrac{3}{7}\) của 63 là
1. <, >, =
\(\dfrac{14}{7}\) ...... \(\dfrac{9}{7}\)
\(\dfrac{6}{13}\) ....... 1
\(\dfrac{7}{9}\)..........\(\dfrac{14}{18}\)
\(\dfrac{4}{9}\)........ \(\dfrac{26}{45}\)
\(\dfrac{11}{24}\)........ \(\dfrac{3}{8}\)
\(\dfrac{42}{91}\)....... \(\dfrac{7}{13}\)
\(\dfrac{34}{64}\)........... \(\dfrac{13}{16}\)
\(\dfrac{17}{30}\).......... \(\dfrac{8}{15}\)
2.
\(\dfrac{14}{7}>\dfrac{9}{7}\)
\(\dfrac{6}{13}< 1\)
\(\dfrac{7}{9}=\dfrac{14}{18}\)
\(\dfrac{4}{9}=\dfrac{20}{45}< \dfrac{26}{45}\)
\(\dfrac{11}{24}>\dfrac{9}{24}=\dfrac{3}{8}\)
\(\dfrac{42}{91}=\dfrac{42:7}{91:7}=\dfrac{6}{13}< \dfrac{7}{13}\)
\(\dfrac{34}{64}< \dfrac{52}{64}=\dfrac{13}{16}\)
\(\dfrac{17}{30}>\dfrac{16}{30}=\dfrac{8}{15}\)
tìm x biết
a)x-\(\dfrac{3}{7}\)=\(\dfrac{2}{5}.\dfrac{1}{4}\)
b)x+\(\dfrac{4}{5}\)=\(\dfrac{-5}{12}\).\(\dfrac{3}{25}\)
c)\(\dfrac{x}{182}\)=\(\dfrac{-6}{12}\).\(\dfrac{35}{91}\)
a/ \(x-\dfrac{3}{7}=\dfrac{2}{5}\cdot\dfrac{1}{4}\)
\(x-\dfrac{3}{7}=\dfrac{1}{10}\)
\(x=\dfrac{1}{10}+\dfrac{3}{7}=\dfrac{37}{70}\)
Vậy....
b/ \(x+\dfrac{4}{5}=-\dfrac{5}{12}\cdot\dfrac{3}{25}\)
\(x+\dfrac{4}{5}=-\dfrac{1}{20}\)
\(x=-\dfrac{1}{20}-\dfrac{4}{5}=-\dfrac{17}{20}\)
Vậy....
c/ \(\dfrac{x}{182}=-\dfrac{6}{12}\cdot\dfrac{35}{91}\)
\(\dfrac{x}{182}=-\dfrac{5}{26}\)
\(=>x\cdot26=-5\cdot182\)
\(26x=-910\)
\(x=-910:26=-35\)
Vậy....
a) Ta có: \(x-\dfrac{3}{7}=\dfrac{2}{5}\cdot\dfrac{1}{4}\)
\(\Leftrightarrow x-\dfrac{3}{7}=\dfrac{1}{10}\)
\(\Leftrightarrow x=\dfrac{1}{10}+\dfrac{3}{7}=\dfrac{7}{70}+\dfrac{30}{70}\)
hay \(x=\dfrac{37}{70}\)
Vậy: \(x=\dfrac{37}{70}\)
27 Tính
A= \(\dfrac{10\dfrac{1}{3}.(26\dfrac{1}{3}-\dfrac{176}{7})-\dfrac{12}{11}.(\dfrac{10}{3}-1,75}{(\dfrac{5}{91-0,25)}.\dfrac{60}{11}-1}\)