tính gần đúng giá trị biểu thức \(\dfrac{1}{3}\)-\(\dfrac{1}{7}\)
nhanh nhé !
thanks !
Tính giá trị của biểu thức:
\(A=\dfrac{1}{2}-\dfrac{1}{2^2}+\dfrac{1}{2^3}-\dfrac{1}{2^4}+...+\dfrac{1}{2^{99}}-\dfrac{1}{2^{100}}\)
Nhanh nhé mình cần gấp lắm!!!
2A=1-1/2+1/2^2-...+1/2^98-1/2^99
=>3A=1-1/2^100
=>\(A=\dfrac{2^{100}-1}{3\cdot2^{100}}\)
Cho dãy số \(\left\{U_n\right\}\) được xác định như sau: \(U_1=\dfrac{1}{3},U_n=\dfrac{\left(n^2-1\right)U_{n-1}}{n\left(n+2\right)}\) (Với \(n=2;3;4...\)). Tính gần đúng giá trị của biểu thức \(A=U_1+U_2+U_3+...+U_{2015}\).
\(U_n=\dfrac{\left(n^2-1\right)}{n\left(n+2\right)}U_{n-1}\Rightarrow n\left(n+2\right).U_n=\left(n-1\right)\left(n+1\right).U_{n-1}\)
Đặt \(n\left(n+2\right).U_n=V_n\Rightarrow V_{n-1}=\left(n-1\right)\left(n+2-1\right).U_{n-1}=\left(n-1\right).\left(n+1\right)U_{n-1}\)
\(\Rightarrow V_n=V_{n-1}\)
\(\Rightarrow V_n=V_{n-1}=V_{n-2}=...=V_1\)
Có \(V_1=1.\left(1+2\right).U_1=1\)
\(\Rightarrow V_n=1\)
\(\Rightarrow U_n=\dfrac{V_n}{n\left(n+2\right)}=\dfrac{1}{n\left(n+2\right)}\)
\(\Rightarrow A=\dfrac{1}{1.3}+\dfrac{1}{2.4}+\dfrac{1}{3.5}+...+\dfrac{1}{2015.2017}\)
\(=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2015}-\dfrac{1}{2017}\right)\)
\(=\dfrac{1}{2}\left(1+\dfrac{1}{2}-\dfrac{1}{2016}-\dfrac{1}{2017}\right)\)
\(=...\)
Bài 1. Tính nhanh giá trị của biểu thức sau:
a, E = \(\dfrac{1}{2}\)+ \(\dfrac{1}{3}\)+ \(\dfrac{1}{6}\)+ \(\dfrac{1}{24}\)+ \(\dfrac{1}{8}\)+ \(\dfrac{1}{2}\)+\(\dfrac{1}{12}\)
\(E=\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{8}+\dfrac{1}{2}+\dfrac{1}{12}\)
\(E=\left(\dfrac{1}{2}+\dfrac{1}{2}\right)+\left(\dfrac{1}{3}+\dfrac{1}{6}\right)+\left(\dfrac{1}{8}+\dfrac{1}{12}+\dfrac{1}{24}\right)\)
\(E=\dfrac{2}{2}+\dfrac{3}{6}+\left(\dfrac{1}{8}+\dfrac{3}{24}\right)\)
\(E=1+\dfrac{1}{2}+\left(\dfrac{1}{8}+\dfrac{1}{8}\right)\)
\(E=\left(\dfrac{2}{2}+\dfrac{1}{2}\right)+\dfrac{2}{8}\)
\(E=\dfrac{3}{2}+\dfrac{1}{4}\)
\(E=\dfrac{6}{4}+\dfrac{1}{4}\)
\(E=\dfrac{7}{4}\)
tính giá trị biểu thức :\(\dfrac{3}{4}\) - \(\dfrac{5}{6}\) x ( \(\dfrac{1}{6}\)+ \(\dfrac{1}{8}\)) : \(\dfrac{7}{12}\)
\(=\dfrac{3}{4}-\dfrac{5}{6}\times\dfrac{7}{24}\times\dfrac{12}{7}=\dfrac{3}{4}-\dfrac{5}{12}=\dfrac{1}{3}\)
\(\dfrac{3}{4}-\dfrac{5}{6}\left(\dfrac{1}{6}+\dfrac{1}{8}\right):\dfrac{7}{12}\)
\(=\dfrac{3}{4}-\dfrac{5}{6}\cdot\dfrac{7}{24}\cdot\dfrac{12}{7}\)
\(=\dfrac{3}{4}-\dfrac{5}{12}\)
\(=\dfrac{4}{12}=\dfrac{1}{3}\)
Tính nhanh giá trị các biểu thức sau :
\(A=\dfrac{6}{7}+\dfrac{1}{7}.\dfrac{2}{7}+\dfrac{1}{7}.\dfrac{5}{7}\) \(B=\dfrac{4}{9}.\dfrac{13}{3}-\dfrac{4}{3}.\dfrac{40}{9}\)
\(A=\dfrac{6}{7}+\dfrac{1}{7}.\dfrac{2}{7}+\dfrac{1}{7}.\dfrac{5}{7}.\)
\(A=\dfrac{6}{7}+\dfrac{1}{7}\left(\dfrac{2}{7}+\dfrac{5}{7}\right).\)
\(A=\dfrac{6}{7}+\dfrac{1}{7}.1.\)
\(A=\dfrac{6}{7}+\dfrac{1}{7}=1.\)
Vậy \(A=1.\)
\(B=\dfrac{40}{9}.\dfrac{13}{3}-\dfrac{4}{3}.\dfrac{40}{9}.\)
\(B=\dfrac{4}{9}.\dfrac{13}{3}-\dfrac{4}{9}.\dfrac{40}{3}.\)
\(B=\dfrac{4}{9}\left(\dfrac{13}{3}-\dfrac{40}{3}\right).\)
\(B=\dfrac{4}{9}.\left(-9\right).\)
\(B=-4.\)
Vậy \(B=-4.\)
Tính giá trị của biểu thức:
\(\dfrac{\dfrac{3}{4}-\dfrac{3}{5}+\dfrac{3}{7}+\dfrac{3}{11}}{\dfrac{13}{4}-\dfrac{13}{5}+\dfrac{13}{7}+\dfrac{13}{11}}\)
Hnay nộp rồi, nhanh nha
\(=\dfrac{3\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{7}+\dfrac{1}{11}\right)}{13\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{17}+\dfrac{1}{11}\right)}=\dfrac{3}{13}\)
\(\dfrac{\dfrac{3}{4}-\dfrac{3}{5}+\dfrac{3}{7}+\dfrac{3}{11}}{\dfrac{13}{4}-\dfrac{13}{5}+\dfrac{13}{7}+\dfrac{13}{11}}\)
\(=\dfrac{3\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{7}+\dfrac{1}{11}\right)}{13\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{7}+\dfrac{1}{11}\right)}\)
\(=\dfrac{3}{13}\)
tính giá trị biểu thức
\(\dfrac{3}{5}x\dfrac{2}{3}:\dfrac{1}{2}=?\)
\(\dfrac{2}{3}\cdot\dfrac{1}{2}+\dfrac{1}{3}=?\)
\(\left(\dfrac{5}{7}+\dfrac{2}{5}\right):\dfrac{11}{7}=?\)
1.\(\dfrac{4}{5}\)
2.\(\dfrac{2}{3}\)
3.\(\dfrac{39}{55}\)
a) \(\dfrac{3}{5}\times\dfrac{2}{3}:\dfrac{1}{2}=\dfrac{3}{5}\times\dfrac{2}{3}\times2=\dfrac{6}{15}\times2=\dfrac{12}{15}=\dfrac{4}{5}\)
b) \(\dfrac{2}{3}\cdot\dfrac{1}{2}+\dfrac{1}{3}=\dfrac{1}{3}+\dfrac{1}{3}=\dfrac{2}{3}\)
c) \(\left(\dfrac{5}{7}+\dfrac{2}{5}\right):\dfrac{11}{7}=\left(\dfrac{25}{35}+\dfrac{14}{35}\right)\cdot\dfrac{7}{11}=\dfrac{39}{35}\cdot\dfrac{7}{11}=\dfrac{273}{385}=\dfrac{39}{55}\)
a) = \(\dfrac{6}{15}\) \(\div\dfrac{1}{2}=\) \(\dfrac{12}{15}\) rút gọn = \(\dfrac{4}{5}\)
b) = \(\dfrac{2}{6}+\dfrac{1}{3}\) = \(\dfrac{6}{18}+\dfrac{6}{18}\) = \(\dfrac{12}{18}\) = \(\dfrac{2}{3}\)
c) = \(\dfrac{5}{7}+\dfrac{2}{5}=\dfrac{25}{35}+\dfrac{14}{35}=\dfrac{39}{35}\) \(\div\dfrac{11}{7}=\dfrac{39}{35}\)
tính giá trị biểu thức \(\dfrac{2}{3}+\dfrac{1}{3}.\left(-\dfrac{4}{9}+\dfrac{5}{6}\right):\dfrac{7}{12}\)
\(=\dfrac{2}{3}+\dfrac{1}{3}.\dfrac{7}{18}.\dfrac{12}{7}\)
\(=\dfrac{2}{3}+\dfrac{7.3.2.2}{3.7.3.2.3}\)
\(=\dfrac{2}{3}+\dfrac{2}{9}=\dfrac{8}{9}\)
TICK CHO MÌNH NHÉ
Giải:
\(\dfrac{2}{3}\) + \(\dfrac{1}{3}\) . (\(-\dfrac{4}{9}\) + \(\dfrac{5}{6}\) ) : \(\dfrac{7}{12}\)
= \(\dfrac{2}{3}\) + \(^{\dfrac{1}{3}}\) . \(\dfrac{7}{18}\) : \(\dfrac{7}{12}\)
= \(\dfrac{2}{3}\) + \(\dfrac{7}{54}\) : \(\dfrac{7}{12}\)
= \(\dfrac{2}{3}\) + \(\dfrac{2}{9}\)
= \(\dfrac{8}{9}\)
2 /3 + 1/ 3 . ( − 4 9 + 5 6 ) : 7 /12
= 2/ 3 + 1 /3 . 7 /18 . 12/ 7
= 2/ 3 + 7 /48 . 12 /7
= 2/ 3 + 1/ 4
= 11/ 12
Tính giá trị các biểu thức sau:
a) \(\dfrac{2}{3}\)+\(\dfrac{1}{3}\).(\(\dfrac{-4}{9}\)+\(\dfrac{5}{6}\)):\(\dfrac{7}{12}\)
\(=\dfrac{2}{3}+\dfrac{1}{3}.\left(\dfrac{7}{18}\right):\dfrac{7}{12}\)
\(=\dfrac{2}{3}+\dfrac{7}{54}:\dfrac{7}{12}\)
\(=\dfrac{2}{3}+\dfrac{2}{9}\)
\(=\dfrac{8}{9}\)