Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Võ Anh Nguyên
Xem chi tiết
songoku
1 tháng 9 2017 lúc 22:02

sử dụng phương pháp quy nạp

*với n=1 thì 2 chia hết cho2 

*với n=2 thì 3*4=12 chia hết cho 4

thử đúng đến n=k cần cm n=k+ 

ta có (k+1)(k+2)(k+3).....(k+k-1)(k+k)chia hết cho 2k

n=k+1 biểu thức có dạng (k+1+1)(k+1+2)....(k+1+k)(k+1+k+1)

=2(k+1)(k+2)(k+3)....(k+k-1)(k+k)(k+k+1)chia hết cho2k*2=2k+1

songoku
1 tháng 9 2017 lúc 22:03

thiếu số 1 ở chỗ cm đúng với n=k+1

MY HOME IS THE MOST BEAU...
Xem chi tiết
MY HOME IS THE MOST BEAU...
Xem chi tiết
LIVERPOOL
Xem chi tiết
Nguyễn Duy Long
11 tháng 10 2017 lúc 22:02

khó thế

Trần Ngọc Thanh Tuyết
Xem chi tiết
Akai Haruma
30 tháng 1 2017 lúc 17:48

Đặt \(A=n(n+1)(2n+1)\)

Nếu $n$ chẵn thì $A$ chẵn \(\Rightarrow A\vdots 2\)

Nếu $n$ lẻ thì $n+1$ chẵn, do đó $A$ chẵn \(\Rightarrow A\vdots 2\)

Vậy $A$ luôn chia hết cho $2$ $(I)$

Nếu $n$ chia hết cho $3$ thì $A$ chia hết cho $3$

Nếu $n$ chia $3$ dư $1$ thì $2n+1$ chia hết cho $3$ nên $A$ chia hết cho $3$

Nếu $n$ chia $3$ dư $2$ thì $n+1$ chia hết cho $3$ nên $A$ chia hết cho $3$

Vậy $A$ luôn chia hết cho $3$ $(II)$

Từ $(I),(II)$ kết hợp với $(2,3)=1$ suy ra \(A\vdots (2.3=6)\) (đpcm)

Trần Ngọc Thanh Tuyết
30 tháng 1 2017 lúc 17:40
Trần Hoàng Đăng
30 tháng 1 2017 lúc 18:35

6 nha

Trần Đức Mạnh
Xem chi tiết
Sakia Hachi
9 tháng 11 2017 lúc 19:59

khai triển ra, ta dc:
25^n+5^n-18^n-12^n (1)
=(25^n-18^n)-(12^n-5^n)
=(25-18)K-(12-5)H = 7(K-H) chia hết cho 7
.giải thích: 25^n-18^n=(25-18)[25^(n-1)+ 25^(n-2).18^1 +.....+18^n]=7K vì đặt K là [25^(n-1)+ 25^(n-2).18^1 +.....+18^n, cái (12-5)H cx tương tự

Biểu thức đó đã chia hết cho 7 rồi, bây h cần chứng minh biểu thức đó chia hết cho 13 là xong
từ (1) nhóm ngược lại để chia hết cho 13. Cụ thể là (25^n-12^n)-(18^n-5^n) chia hết cho 13, cách chứng minh chia hết cho 13 này cx tương tự như cách c.minh chia hết cho 7

.1Mà biểu thức này vừa chia hết cho 7, vừa chia hết cho 13 nên chia hết cho (7.13)=91

Xong!!!

Sakia Hachi
9 tháng 11 2017 lúc 20:11

cái này dễ hiểu hơn

5^n (5^n + 1) – 6^n (3^n + 2^n) chia hết cho 91
A = 5^n (5^n + 1) – 6^n (3^n + 2^n) = + 5^n – 18^n – 12^n
= 25^n – 18^n – (12^n – 5^n)
Ta có: 25 – 18 chia hết cho 7
Nên 25 đồng dư với 18 khi chia cho 7
Hay 25^n đồng dư với 18^n khi chia cho 7
Suy ra 25^n – 18^n chia hết cho 7
Chứng minh tương tự thì 12^n – 5^n chia hết cho 7
Nên A chia hết cho 7
Mặt khác A = 25^n – 12^n – (18^n – 5^n)
với 25^n – 12^n và 18^n – 5^n đều chia hết cho 13
Suy ra A chia hết cho 13
Vậy A chia hết cho 7.13 = 91

Chuột yêu Gạo
Xem chi tiết
Nguyễn Minh Tài
Xem chi tiết
Vũ Hoàng Quân
6 tháng 11 2023 lúc 22:17

Llklkksd

Tâm Cao
Xem chi tiết
Nguyễn Việt Lâm
1 tháng 3 2021 lúc 21:41

Quy nạp 1 cách đơn giản, ta dễ dàng chứng minh dãy dương

Lại có: \(v_{n+1}=\dfrac{2v_n}{1+2018v_n^2}\le\dfrac{2v_n}{2\sqrt{1.2018v_n^2}}=\dfrac{1}{\sqrt{2018}}\)

\(\Rightarrow\) Dãy bị chặn trên bởi \(\dfrac{1}{\sqrt{2018}}\) hay \(v_n\le\dfrac{1}{\sqrt{2018}}\Leftrightarrow v_n^2\le\dfrac{1}{2018}\)  ; \(\forall n\ge1\)

\(\Leftrightarrow1-2018v_n^2\ge0\)

Ta có: \(v_{n+1}-v_n=\dfrac{2v_n}{1+2018v_n^2}-v_n=\dfrac{v_n-2018v_n^3}{1+2018v_n^2}=\dfrac{v_n\left(1-2018v_n^2\right)}{1+2018v_n^2}\ge0\)

\(\Rightarrow v_{n+1}\ge v_n\) (đpcm)