Tính nhanh giá tị mỗi biểu thức sau :
a) \(\dfrac{-5}{13}\) + \((\dfrac{-8}{13}\) + 1\()\);
b) \(\dfrac{2}{3}\) + ( \(\dfrac{3}{8}\) + \(\dfrac{-2}{3}\) );
c) ( \(\dfrac{-3}{4}\) + \(\dfrac{5}{8}\) ) + \(\dfrac{-1}{8}\)
Tính giá trị của biểu thức:
\(\dfrac{\dfrac{3}{4}-\dfrac{3}{5}+\dfrac{3}{7}+\dfrac{3}{11}}{\dfrac{13}{4}-\dfrac{13}{5}+\dfrac{13}{7}+\dfrac{13}{11}}\)
Hnay nộp rồi, nhanh nha
\(=\dfrac{3\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{7}+\dfrac{1}{11}\right)}{13\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{17}+\dfrac{1}{11}\right)}=\dfrac{3}{13}\)
\(\dfrac{\dfrac{3}{4}-\dfrac{3}{5}+\dfrac{3}{7}+\dfrac{3}{11}}{\dfrac{13}{4}-\dfrac{13}{5}+\dfrac{13}{7}+\dfrac{13}{11}}\)
\(=\dfrac{3\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{7}+\dfrac{1}{11}\right)}{13\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{7}+\dfrac{1}{11}\right)}\)
\(=\dfrac{3}{13}\)
Tính giá trị các biểu thức sau một cách hợp lí :
\(A=\dfrac{7}{19}.\dfrac{8}{11}+\dfrac{7}{19}.\dfrac{3}{11}+\dfrac{12}{19}\)
\(B=\dfrac{5}{9}.\dfrac{7}{13}+\dfrac{5}{9}.\dfrac{9}{13}-\dfrac{5}{9}.\dfrac{3}{13}\)
\(C=\left(\dfrac{67}{111}+\dfrac{2}{33}-\dfrac{15}{117}\right).\left(\dfrac{1}{3}-\dfrac{1}{4}-\dfrac{1}{12}\right)\)
Gợi ý: Sử dụng tính chất phân phối của phép nhân đối với phép cộng để nhóm thừa số chung ra ngoài.
giá trị biểu thức của B=\(\dfrac{2}{11}-\dfrac{5}{13}+\dfrac{9}{11}-\dfrac{8}{13}\)là:
A.2 B.0
C.1 D.-1
GẤP Ạ
Câu 1: Tìm x, biết:
a)\(x^2-\dfrac{16}{25}=0\) b)\(\dfrac{2}{5}-\left|\dfrac{1}{2}-x\right|=6\)
C2.Tính giá của biểu thức:
a)\(A=1\dfrac{5}{13}-0,25-\left(2\dfrac{5}{9}+\dfrac{18}{13}-\dfrac{1}{4}\right)\)
b)\(\dfrac{\dfrac{3}{5}.7^2-3.5^6+\dfrac{3}{5}.3^9}{\dfrac{3}{4}.7^2-\dfrac{3}{4}.5^7+\dfrac{3}{4}.3^9}\)
a)
x^2-16/25=0
x^2-4^2/5^2=0
=>x-4/5=0
x=0+4/5
x=0/5
Tính nhanh giá trị các biểu thức sau :
\(A=\dfrac{6}{7}+\dfrac{1}{7}.\dfrac{2}{7}+\dfrac{1}{7}.\dfrac{5}{7}\) \(B=\dfrac{4}{9}.\dfrac{13}{3}-\dfrac{4}{3}.\dfrac{40}{9}\)
\(A=\dfrac{6}{7}+\dfrac{1}{7}.\dfrac{2}{7}+\dfrac{1}{7}.\dfrac{5}{7}.\)
\(A=\dfrac{6}{7}+\dfrac{1}{7}\left(\dfrac{2}{7}+\dfrac{5}{7}\right).\)
\(A=\dfrac{6}{7}+\dfrac{1}{7}.1.\)
\(A=\dfrac{6}{7}+\dfrac{1}{7}=1.\)
Vậy \(A=1.\)
\(B=\dfrac{40}{9}.\dfrac{13}{3}-\dfrac{4}{3}.\dfrac{40}{9}.\)
\(B=\dfrac{4}{9}.\dfrac{13}{3}-\dfrac{4}{9}.\dfrac{40}{3}.\)
\(B=\dfrac{4}{9}\left(\dfrac{13}{3}-\dfrac{40}{3}\right).\)
\(B=\dfrac{4}{9}.\left(-9\right).\)
\(B=-4.\)
Vậy \(B=-4.\)
hãy tính giá trị của biểu thức sau:
C=\(\left|-3\left(-\dfrac{13}{15}-\dfrac{17}{21}\right)\right|-\left|-\dfrac{13}{5}+\dfrac{17}{7}\right|+\left(-12+\dfrac{35}{3}\right):\left|-\dfrac{7}{6}\right|\)
\(C=\left|-3\left(\dfrac{-13}{15}-\dfrac{17}{21}\right)\right|-\left|\dfrac{-13}{15}+\dfrac{17}{7}\right|+\left(-12+\dfrac{35}{3}\right):\left|-\dfrac{7}{6}\right|\\ =\left|-3.-\dfrac{176}{105}\right|-\left|-\dfrac{6}{35}\right|+\left(-\dfrac{1}{3}\right):\dfrac{7}{6}\\ =\dfrac{176}{35}-\dfrac{6}{35}-\dfrac{1}{3}:\dfrac{7}{6}\\ =\dfrac{176}{35}-\dfrac{6}{35}-\dfrac{2}{7}\\ =\dfrac{170}{35}-\dfrac{2}{7}=\dfrac{32}{7}.\)
Bài 1: Thực hiện các phép tính (Tính nhanh nếu có thể)
a) \(\dfrac{-5}{9}\) - \(\dfrac{-5}{12}\) b) \(\dfrac{-5}{12}\) : \(\dfrac{15}{4}\) c) \(\dfrac{1}{13}\) x \(\dfrac{8}{13}\) + \(\dfrac{5}{13}\) x \(\dfrac{1}{13}\) - \(\dfrac{14}{13}\)
Bài 2: Tìm \(x\), biết:
a) \(x=\dfrac{1}{5}+\dfrac{-3}{7}\) b) \(\dfrac{3}{5}-\dfrac{4}{7}\)\(:\)\(x=\dfrac{-9}{10}\) c) \(x-\left(\dfrac{-3}{4}\right)=\dfrac{-2}{3}-\dfrac{1}{2}\)
d) \(\dfrac{-5}{9}-x=\dfrac{1}{3}+\dfrac{7}{18}\)
Bài 3: Cho S = \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{10^2}\). Chứng minh rằng: \(S>\dfrac{9}{22}\)
bài 1 : tìm x
a) x + \(\dfrac{7}{8}\) = \(\dfrac{13}{2}\) : 4
b) x : \(\dfrac{5}{3}\) = \(\dfrac{6}{5}\) - \(\dfrac{2}{3}\)
bài 2 : giá trị của biểu thức \(\dfrac{28}{25}\) : \(\dfrac{7}{15}_{ }\) x 5 là ....
Bài 2:
\(=\dfrac{28}{25}\cdot\dfrac{15}{7}\cdot5=\dfrac{75}{25}\cdot4=12\)
Bài 1:
a: \(x+\dfrac{7}{8}=\dfrac{13}{2}:4=\dfrac{13}{8}\)
nên x=13/8-7/8=6/8=3/4
b: \(x:\dfrac{5}{3}=\dfrac{6}{5}-\dfrac{2}{3}=\dfrac{18-10}{15}=\dfrac{8}{15}\)
nên \(x=\dfrac{8}{15}\cdot\dfrac{5}{3}=\dfrac{8}{9}\)
Tính giá trị của biểu thức sau: \(log^2_{\dfrac{1}{a}}a^2+log_{a^2}a^{\dfrac{1}{2}}\) (1≠a>0)
A. \(\dfrac{17}{4}\)
B. \(\dfrac{13}{4}\)
C. \(-\dfrac{11}{4}\)
D. -\(\dfrac{15}{4}\)
\(=\left(log_{a^{-1}}a^2\right)^2+\dfrac{1}{2}.\dfrac{1}{2}log_aa\)
\(=\left(-1.2.log_aa\right)^2+\dfrac{1}{4}=4+\dfrac{1}{4}=\dfrac{17}{4}\)