\(CMR:\left(2^n+1\right)\left(2^n+2\right)⋮3\left(\forall n\in N\right)\)
\(CMR:\left(2^n+1\right)\left(2^n+2\right)⋮3\left(\forall n\in N\right)\)
CMR:
\(\left(n+1\right)\left(n+2\right)...\left(n+n\right)⋮2^n\left(\forall n\in N\cdot\right)\)
sử dụng phương pháp quy nạp
*với n=1 thì 2 chia hết cho2
*với n=2 thì 3*4=12 chia hết cho 4
thử đúng đến n=k cần cm n=k+
ta có (k+1)(k+2)(k+3).....(k+k-1)(k+k)chia hết cho 2k
n=k+1 biểu thức có dạng (k+1+1)(k+1+2)....(k+1+k)(k+1+k+1)
=2(k+1)(k+2)(k+3)....(k+k-1)(k+k)(k+k+1)chia hết cho2k*2=2k+1
Chứng minh các mệnh đề sau:
\(a,1^2+2^2+...+n^2=\dfrac{n\left(n+1\right)\left(2n+1\right)}{6}\) \(\forall n\in N\) *
\(b,1.2+2.3+...+n\left(n+1\right)=\dfrac{n\left(n+1\right)\left(n+2\right)}{3}\) \(\forall n\in N\) *
CMR: \(\forall n\in N\)thì \(\left|\left\{\frac{n}{1}\right\}-\left\{\frac{n}{2}\right\}+\left\{\frac{n}{3}\right\}-...-\left(-1\right)^n\left\{\frac{n}{n}\right\}\right|< \sqrt{2n}\)
CMR: \(A=5^n.\left(5^n+1\right)-6^n.\left(3^n+2^n\right)⋮91\forall n\in Z\)
khai triển ra, ta dc:
25^n+5^n-18^n-12^n (1)
=(25^n-18^n)-(12^n-5^n)
=(25-18)K-(12-5)H = 7(K-H) chia hết cho 7
.giải thích: 25^n-18^n=(25-18)[25^(n-1)+ 25^(n-2).18^1 +.....+18^n]=7K vì đặt K là [25^(n-1)+ 25^(n-2).18^1 +.....+18^n, cái (12-5)H cx tương tự
Biểu thức đó đã chia hết cho 7 rồi, bây h cần chứng minh biểu thức đó chia hết cho 13 là xong
từ (1) nhóm ngược lại để chia hết cho 13. Cụ thể là (25^n-12^n)-(18^n-5^n) chia hết cho 13, cách chứng minh chia hết cho 13 này cx tương tự như cách c.minh chia hết cho 7
.1Mà biểu thức này vừa chia hết cho 7, vừa chia hết cho 13 nên chia hết cho (7.13)=91
Xong!!!
cái này dễ hiểu hơn
5^n (5^n + 1) – 6^n (3^n + 2^n) chia hết cho 91
A = 5^n (5^n + 1) – 6^n (3^n + 2^n) = + 5^n – 18^n – 12^n
= 25^n – 18^n – (12^n – 5^n)
Ta có: 25 – 18 chia hết cho 7
Nên 25 đồng dư với 18 khi chia cho 7
Hay 25^n đồng dư với 18^n khi chia cho 7
Suy ra 25^n – 18^n chia hết cho 7
Chứng minh tương tự thì 12^n – 5^n chia hết cho 7
Nên A chia hết cho 7
Mặt khác A = 25^n – 12^n – (18^n – 5^n)
với 25^n – 12^n và 18^n – 5^n đều chia hết cho 13
Suy ra A chia hết cho 13
Vậy A chia hết cho 7.13 = 91
CMR :
a) \(n^2+7n-40⋮̸121\forall n\in N\)
b)\(a^2+\left(a+1\right)^2+\left(a+2\right)^2+\left(a+3\right)^2+\left(a+4\right)^2⋮̸25\)
Lời giải:
a) Phản chứng. Giả sử tồn tại \( n\in\mathbb{N}|n^2+7n-40\vdots 121\)
\(\Rightarrow n^2+7n-40\vdots 11\)
\(\Leftrightarrow n^2-4n+4+11n-44\vdots 11\)
\(\Leftrightarrow n^2-4n+4=(n-2)^2\vdots 11\)
\(\Leftrightarrow n-2\vdots 11\) (vì \(11\in\mathbb{P}\) )
Do đó, đặt \(n=11k+2\)
Ta có, \(n^2+7n-40\vdots 121\)
\(\Leftrightarrow (11k+2)^2+7(11k+2)-40\vdots 121\)
\(\Leftrightarrow 121k^2+121k-22\vdots 121\)
\(\Leftrightarrow 22\vdots 121\) (vô lý)
Do đó, điểu giả sử là sai, nghĩa là không tồn tại bất kỳ số tự nhiên nào thỏa mãn \(n^2+7n-40\vdots 121\)
Hay \(n^2+7n-40\not\vdots 121\) (đpcm)
Lời giải:
b) Giả sử phản chứng, nghĩa là
\(a^2+(a+1)^2+(a+2)^2+(a+3)^2+(a+4)^2\vdots 25\)
Thực hiện khai triển bằng hằng đẳng thức, ta có:
\(a^2+(a+1)^2+(a+2)^2+(a+3)^2+(a+4)^2\)
\(=5a^2+20a+30\)
Khi đó:
\(a^2+(a+1)^2+(a+2)^2+(a+3)^2+(a+4)^2\vdots 25\)
\(\Leftrightarrow 5a^2+20a+30\vdots 25\)
\(\Leftrightarrow a^2+4a+6\vdots 5\)
Xét \(a\equiv 0\pmod 5\rightarrow a^2+4a+6\equiv 6\not\equiv 0\pmod 5\)
Xét \(a\equiv 1\pmod 5\rightarrow a^2+4a+6\equiv 1+4+6\not\equiv 0\pmod 5\)
Xét \(a\equiv 2\pmod 5\rightarrow a^2+4a+6\equiv 18\not\equiv 0\pmod 5\)
Xét \(a\equiv 3\pmod {5}\rightarrow a^2+4a+6=27\not\equiv 0\pmod {5}\)
Xét \(a\equiv 4\pmod 5\Rightarrow a^2+4a+6\equiv 38\not\equiv 0\pmod 5\)
Do đo, \(a^2+4a+6\not\vdots 5\), nghĩa là điều giả sử là sai. Ta có đpcm.
1, CMR nếu a, b, c là các số tự nhiên đôi một nguyên tố cùng nhau thì \(\left(ab+bc+ca,abc\right)=1\)
2, CMR \(\forall n\in N\)* thì \(\dfrac{\left(17+12\sqrt{2}\right)^n-\left(17-12\sqrt{2}\right)^n}{4\sqrt{2}}\)
3, Tìm x,y∈Z:\(x^3-y^3=13\left(x^2+y^2\right)\)
Trong các dãy số sau, dãy số nào bị chặn?
A. Dãy \(\left(a_n\right)\), với \(a_n=\sqrt{n^3+n},\forall n\in N^*\).
B. Dãy \(\left(b_n\right)\), với \(b_n=n^2+\dfrac{1}{2n},\forall n\in N^*\).
C. Dãy \(\left(c_n\right)\), với \(c_n=\left(-2\right)^n+3,\forall n\in N^*\).
D. Dãy \(\left(d_n\right)\), với \(d_n=\dfrac{3n}{n^3+2},\forall n\in N^*\).
Trong các dãy số sau, dãy số nào bị chặn?
A. Dãy \(\left(a_n\right)\), với \(a_n=\sqrt{n^3+n},\forall n\in N^*\).
B. Dãy \(\left(b_n\right)\), với \(b_n=n^2+\dfrac{1}{2n},\forall n\in N^*\).
C. Dãy \(\left(c_n\right)\), với \(c_n=\left(-2\right)^n+3,\forall n\in N^*\).
D. Dãy \(\left(d_n\right)\), với \(d_n=\dfrac{3n}{n^3+2},\forall n\in N^*\).
Nếu được thì giải thích chi tiết từng đáp án giúp mình với ạ, mình cảm ơn!