Ôn tập chương Hình trụ, Hình nón, Hình cầu

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

CMR :

a) \(n^2+7n-40⋮̸121\forall n\in N\)

b)\(a^2+\left(a+1\right)^2+\left(a+2\right)^2+\left(a+3\right)^2+\left(a+4\right)^2⋮̸25\)

Akai Haruma
23 tháng 8 2017 lúc 23:53

Lời giải:

a) Phản chứng. Giả sử tồn tại \( n\in\mathbb{N}|n^2+7n-40\vdots 121\)

\(\Rightarrow n^2+7n-40\vdots 11\)

\(\Leftrightarrow n^2-4n+4+11n-44\vdots 11\)

\(\Leftrightarrow n^2-4n+4=(n-2)^2\vdots 11\)

\(\Leftrightarrow n-2\vdots 11\) (vì \(11\in\mathbb{P}\) )

Do đó, đặt \(n=11k+2\)

Ta có, \(n^2+7n-40\vdots 121\)

\(\Leftrightarrow (11k+2)^2+7(11k+2)-40\vdots 121\)

\(\Leftrightarrow 121k^2+121k-22\vdots 121\)

\(\Leftrightarrow 22\vdots 121\) (vô lý)

Do đó, điểu giả sử là sai, nghĩa là không tồn tại bất kỳ số tự nhiên nào thỏa mãn \(n^2+7n-40\vdots 121\)

Hay \(n^2+7n-40\not\vdots 121\) (đpcm)

Akai Haruma
24 tháng 8 2017 lúc 0:08

Lời giải:

b) Giả sử phản chứng, nghĩa là

\(a^2+(a+1)^2+(a+2)^2+(a+3)^2+(a+4)^2\vdots 25\)

Thực hiện khai triển bằng hằng đẳng thức, ta có:

\(a^2+(a+1)^2+(a+2)^2+(a+3)^2+(a+4)^2\)

\(=5a^2+20a+30\)

Khi đó:

\(a^2+(a+1)^2+(a+2)^2+(a+3)^2+(a+4)^2\vdots 25\)

\(\Leftrightarrow 5a^2+20a+30\vdots 25\)

\(\Leftrightarrow a^2+4a+6\vdots 5\)

Xét \(a\equiv 0\pmod 5\rightarrow a^2+4a+6\equiv 6\not\equiv 0\pmod 5\)

Xét \(a\equiv 1\pmod 5\rightarrow a^2+4a+6\equiv 1+4+6\not\equiv 0\pmod 5\)

Xét \(a\equiv 2\pmod 5\rightarrow a^2+4a+6\equiv 18\not\equiv 0\pmod 5\)

Xét \(a\equiv 3\pmod {5}\rightarrow a^2+4a+6=27\not\equiv 0\pmod {5}\)

Xét \(a\equiv 4\pmod 5\Rightarrow a^2+4a+6\equiv 38\not\equiv 0\pmod 5\)

Do đo, \(a^2+4a+6\not\vdots 5\), nghĩa là điều giả sử là sai. Ta có đpcm.


Các câu hỏi tương tự
Nguyễn Hữu Tuyên
Xem chi tiết
Trương Nguyệt Băng Băng
Xem chi tiết
ank viet
Xem chi tiết
Hải Anh
Xem chi tiết
Nghiêm Phương Linh
Xem chi tiết
Nguyễn Huệ Lam
Xem chi tiết
Nghiêm Phương Linh
Xem chi tiết
Dương Phất Kim
Xem chi tiết
nu lethi
Xem chi tiết