Câu 1/ phân tích nhân tử là xong nên không giải.
Câu 2/ Ta có:
\(Q=\dfrac{a}{2\sqrt{b}-5}+\dfrac{b}{2\sqrt{c}-5}+\dfrac{c}{2\sqrt{a}-5}\ge\dfrac{3\sqrt[3]{abc}}{\sqrt[3]{\left(2\sqrt{b}-5\right)\left(2\sqrt{c}-5\right)\left(2\sqrt{a}-5\right)}}\)
\(=\dfrac{3\sqrt[3]{125.abc}}{\sqrt[3]{\left(2\sqrt{b}-5\right).5.\left(2\sqrt{c}-5\right).5.\left(2\sqrt{a}-5\right).5}}\)
\(\ge\dfrac{3\sqrt[3]{125abc}}{\sqrt[3]{\dfrac{\left(2\sqrt{a}-5+5\right)^2}{4}.\dfrac{\left(2\sqrt{b}-5+5\right)^2}{4}.\dfrac{\left(2\sqrt{c}-5+5\right)^2}{4}}}\) (Vì \(a,b,c>\dfrac{25}{4}\))
\(=\dfrac{3\sqrt[3]{125abc}}{\sqrt[3]{abc}}=15\)
Dấu = xảy ra khi \(a=b=c=25\)
PS: Bài nãy láu táu ghi nhầm dấu.
Câu 1/ phân tích nhân tử là xong nên không giải.
Câu 2/ Ta có:
\(Q=\dfrac{a}{2\sqrt{b}-5}+\dfrac{b}{2\sqrt{c}-5}+\dfrac{c}{2\sqrt{a}-5}\ge\dfrac{3\sqrt[3]{abc}}{\sqrt[3]{\left(2\sqrt{b}-5\right)\left(2\sqrt{c}-5\right)\left(2\sqrt{a}-5\right)}}\)
\(=\dfrac{3\sqrt[3]{125.abc}}{\sqrt[3]{\left(2\sqrt{b}-5\right).5.\left(2\sqrt{c}-5\right).5.\left(2\sqrt{a}-5\right).5}}\)
\(\le\dfrac{3\sqrt[3]{125abc}}{\sqrt[3]{\dfrac{\left(2\sqrt{a}-5+5\right)^2}{4}.\dfrac{\left(2\sqrt{b}-5+5\right)^2}{4}.\dfrac{\left(2\sqrt{c}-5+5\right)^2}{4}}}\) (Vì \(a,b,c>\dfrac{25}{4}\))
\(=\dfrac{3\sqrt[3]{125abc}}{\sqrt[3]{abc}}=15\)
Dấu = xảy ra khi \(a=b=c=25\)