Tính:B=\(\dfrac{5^2}{2.3.4}+\dfrac{5^2}{3.4.5}+\dfrac{5^2}{4.5.6}+...+\dfrac{5^2}{48.49.50}\)
Cho S=\(\dfrac{5}{1.2.3}+\dfrac{8}{2.3.4}+\dfrac{11}{3.4.5}+...+\dfrac{6068}{2022.2023.2024}\)
So sánh S với 2
1) Tìm x biết:
\(\left(1-\dfrac{3}{10}-x\right):\left(\dfrac{19}{10}-1-\dfrac{2}{5}\right)+\dfrac{4}{5}=1\)
2) Tính nhanh
a)\(\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}+...+\dfrac{1}{10.11.12}\)
b)\(\dfrac{1^2}{1.2}.\dfrac{2^2}{2.3}.\dfrac{3^2}{3.4}.\dfrac{4^2}{4.5}\)
câu b bài 2:
\(\dfrac{1^2}{1\cdot2}\cdot\dfrac{2^2}{2\cdot3}\cdot\dfrac{3^2}{3\cdot4}\cdot\dfrac{4^2}{4\cdot5}\)
\(=\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot\dfrac{3}{4}\cdot\dfrac{4}{5}\)
\(=\dfrac{1}{5}\)
câu a bài 2:
\(\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{2\cdot3\cdot4}+\dfrac{1}{3\cdot4\cdot5}+...+\dfrac{1}{10\cdot11\cdot12}\)
\(=\dfrac{1}{1}-\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{4}-...-\dfrac{1}{12}\)
\(=1-\dfrac{1}{12}=\dfrac{11}{12}\)
Cho :
\(A=\dfrac{5}{1.2.3}+\dfrac{8}{2.3.4}+\dfrac{11}{3.4.5}+...+\dfrac{6056}{2018.2019.2020}\)
Hãy so sánh A với 2
a) \(\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+\dfrac{2}{3.4.5}+...+\dfrac{2}{18.19.20}\)
b) \(\dfrac{4}{1.3.5}+\dfrac{4}{3.5.7}+\dfrac{4}{5.7.9}+...+\dfrac{4}{21.23.25}\)
c) \(\dfrac{3}{1.2}-\dfrac{5}{2.3}+\dfrac{7}{3.4}-\dfrac{9}{4.5}+...+\dfrac{39}{19.20}-\dfrac{41}{20.21}\)
d) \(\dfrac{8}{9}\cdot\dfrac{15}{16}\cdot\dfrac{24}{25}\cdot...\cdot\dfrac{99}{100}\cdot\dfrac{120}{121}\)
e) \(\left(1+\dfrac{7}{9}\right)\left(1+\dfrac{7}{20}\right)\left(1+\dfrac{7}{33}\right)\left(1+\dfrac{7}{48}\right)...\left(1+\dfrac{7}{180}\right)\)
Các bạn không nhất thiết phải làm hết, làm cho nó dễ hiểu được thì càng tốt để mk vận dụng
a: \(=\dfrac{1}{1\cdot2}-\dfrac{1}{2\cdot3}+\dfrac{1}{2\cdot3}-\dfrac{1}{3\cdot4}+...+\dfrac{1}{18\cdot19}-\dfrac{1}{19\cdot20}\)
=1/2-1/380
=179/380
b: \(=\dfrac{1}{1\cdot3}-\dfrac{1}{3\cdot5}+\dfrac{1}{3\cdot5}-\dfrac{1}{5\cdot7}+...+\dfrac{1}{21\cdot23}-\dfrac{1}{23\cdot25}\)
\(=\dfrac{1}{3}-\dfrac{1}{575}=\dfrac{572}{1725}\)
c: \(=1+\dfrac{1}{2}-\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{19}+\dfrac{1}{20}-\dfrac{1}{20}-\dfrac{1}{21}\)
=1-1/21
=20/21
d: \(=\left(1-\dfrac{1}{9}\right)\left(1-\dfrac{1}{16}\right)\cdot...\cdot\left(1-\dfrac{1}{121}\right)\)
\(=\dfrac{2}{3}\cdot\dfrac{3}{4}\cdot...\cdot\dfrac{10}{11}\cdot\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot...\cdot\dfrac{12}{11}\)
\(=\dfrac{2}{11}\cdot\dfrac{12}{2}=\dfrac{12}{11}\)
Tìm y:
-y:\(\dfrac{1}{2}\)-\(\dfrac{5}{2}\)=4\(\dfrac{1}{2}\)
Tính:
N = \(\dfrac{3}{4}\).\(\dfrac{8}{9}\).\(\dfrac{15}{16}\)....\(\dfrac{899}{900}\).\(\dfrac{960}{961}\)
S=\(\dfrac{1}{1.2.3}\)+\(\dfrac{1}{2.3.4}\)+\(\dfrac{1}{3.4.5}\)+...+\(\dfrac{1}{10.11.12}\)+\(\dfrac{1}{11.12.13}\)
Tìm y:
-y:1/2-5/2=4+1/2
-y:1/2 = 4+1/2+5/2
-y:1/2 = 7
-y = 7.2
y = -14
Vậy y = -14
TÍnh A=\(\dfrac{1}{1.2}-\dfrac{1}{1.2.3}+\dfrac{1}{2.3}-\dfrac{1}{2.3.4}+\dfrac{1}{3.4}-\dfrac{1}{3.4.5}+...+\dfrac{1}{99.100}-\dfrac{1}{99.100.101}\)
B=\(\dfrac{5}{1.2.3.4}+\dfrac{5}{2.3.4.5}+...+\dfrac{5}{98.99.100.101}\)
C=\(\dfrac{6}{1^2+2^2}+\dfrac{10}{2^2+3^2}+\dfrac{14}{3^2+4^2}+...+\dfrac{398}{99^2.100^2}\)
\(A=\dfrac{1}{1.2}-\dfrac{1}{1.2.3}+\dfrac{1}{2.3}-\dfrac{1}{2.3.4}+\dfrac{1}{3.4}-\dfrac{1}{3.4.5}+\dfrac{1}{99.100}-\dfrac{1}{99.100.101}\)
\(A=\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\right)-\left(\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}+...+\dfrac{1}{99.100.101}\right)\)
\(A=\left(1-\dfrac{1}{100}\right)-\left(\dfrac{\dfrac{1}{1.2}-\dfrac{1}{100.101}}{2}\right)\)
Bấm máy nha
\(B=\dfrac{5}{1.2.3.4}+\dfrac{5}{2.3.4.5}+\dfrac{5}{3.4.5.6}+...+\dfrac{5}{98.99.100.101}\)
\(B=\dfrac{5}{3}.\left(\dfrac{3}{1.2.3.4}+\dfrac{3}{2.3.4.5}+...+\dfrac{3}{98.99.100.101}\right)\)
\(B=\dfrac{5}{3}.\left(\dfrac{4-1}{1.2.3.4}+\dfrac{5-2}{2.3.4.5}+...+\dfrac{101-98}{98.99.100.101}\right)\)
\(B=\dfrac{5}{3}.\left(\dfrac{4}{1.2.3.4}-\dfrac{1}{1.2.3.4}+\dfrac{5}{2.3.4.5}-\dfrac{2}{2.3.4.5}+...+\dfrac{101}{98.99.100.101}-\dfrac{98}{98.99.100.101}\right)\)
\(B=\dfrac{5}{3}.\left(\dfrac{1}{1.2.3}-\dfrac{1}{99.100.101}\right)\)
\(B=\dfrac{5}{3}.\dfrac{166649}{999900}\approx0,3\)
Tính nhanh:
A= \(\dfrac{4}{1.2.3}+\dfrac{4}{2.3.4}+\dfrac{4}{3.4.5}+...+\dfrac{4}{48.49.50}\)
bài 1
a) thực hiện phép tính \(A=\dfrac{2^{12}.3^5-4^6.9^2}{2^2.3^6+8^4.3^5}-\dfrac{5^{10}.7^3-25^5.49^2}{125.7^3+5^9.14^3}\)
b) tính gt biểu thức B= 1.2.3+2.3.4+4.5.6+....+17.18.19
c) tìm 1 số tự nhiên cos 3 chữ số biết rằng nếu tăng chữ số hàng chăm thêm n đơn vị và đồng thời giảm chữ số hàng chục và hàng đơn vị thì đc số có 3 chữ số gấp 3 lần số 3 chữ số ban đầu
Bài 2
1) cho hàm số y=f(x)=(m-1)x
a) tìm m biết f(2)-f(-1)=7
b) chyo đa thức \(A=-\dfrac{1}{2}x^2yz^2,B=-\dfrac{3}{4}xy^2z^2,C=x^3y\)
Cm đơn thức A,B,C ko thể nhận gt âm
Bài 3
Cho △ ABC nhọn có A=60 độ Phân giác ABC cắt AC tại D Phân giác ACB cắt AB tại E và BCcawts CE tại I
a) tính số đo BIC
b) trên BC lấy F sao cho BF=BE CM △CID=△CIF
c) trên IF lấy M sao cho IM=IB+IC .CM △BIM là tam giác đều
Bài 4
Tìm số tự nhiên n thỏa mãn \(2.2^2+3.2^3+4.2^4+....+n.2^n=2^{n+11}\)
mong các bạn giải hộ minh với hu hu hu
Bài 2:
a) Ta có: \(f\left(2\right)-f\left(-1\right)=7\)
\(\Leftrightarrow2\left(m-1\right)-\left(-1\right)\cdot\left(m-1\right)=7\)
\(\Leftrightarrow2m-2+m-1=7\)
\(\Leftrightarrow3m-3=7\)
\(\Leftrightarrow3m=10\)
hay \(m=\dfrac{10}{3}\)
tính
a, A = \(\dfrac{3}{2}\) + \(\dfrac{3}{10}\) + \(\dfrac{3}{50}\)+ \(\dfrac{3}{250}\) + \(\dfrac{3}{1250}\)
b, B = \(\dfrac{3}{2.5}\)+ \(\dfrac{3}{5.8}\) + \(\dfrac{3}{8.11}\) + \(\dfrac{3}{11.14}\)
c, C = \(\dfrac{5}{2}\) + \(\dfrac{5}{6}\) + \(\dfrac{5}{12}\) + \(\dfrac{5}{20}\) + \(\dfrac{5}{30}\) + \(\dfrac{5}{42}\) + ........... + \(\dfrac{5}{110}\)
d, D = \(\dfrac{1}{2.3.4}\) + \(\dfrac{1}{3.4.5}\) + \(\dfrac{1}{4.5.6}\) + \(\dfrac{1}{5.6.7}\) + \(\dfrac{1}{6.7.8}\) + \(\dfrac{1}{7.8.9}\) + \(\dfrac{1}{8.9.10}\)
Đăng ít thôi.
d) \(D=\dfrac{1}{1.2.3}+\dfrac{1}{3.4.5}+\dfrac{1}{4.5.6}+\dfrac{1}{5.6.7}+\dfrac{1}{6.7.8}+\dfrac{1}{7.8.9}+\dfrac{1}{8.9.10}\)
\(\Rightarrow2D=\dfrac{2}{1.2.3}+\dfrac{2}{3.4.5}+\dfrac{2}{4.5.6}+\dfrac{2}{5.6.7}+\dfrac{2}{6.7.8}+\dfrac{2}{7.8.9}+\dfrac{2}{8.9.10}\)
\(\Rightarrow2D=\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+\dfrac{1}{3.4}-\dfrac{1}{4.5}+\dfrac{1}{4.5}-\dfrac{1}{5.6}+...+\dfrac{1}{8.9}-\dfrac{1}{9.10}\)
\(\Rightarrow2D=\dfrac{1}{2.3}-\dfrac{1}{9.10}\)
\(\Rightarrow2D=\dfrac{22}{45}\)
\(\Rightarrow D=\dfrac{11}{45}\)