Đặt S=A
Ta có: \(\frac{3n+2}{n\left(n+1\right)\left(n+2\right)}\)
\(=\frac{2n+2+n}{n\left(n+1\right)\left(n+2\right)}=\frac{2\left(n+1\right)}{n\left(n+1\right)\left(n+2\right)}+\frac{n}{n\left(n+1\right)\left(n+2\right)}\)
\(=\frac{2}{n\left(n+2\right)}+\frac{1}{\left(n+1\right)\left(n+2\right)}=\frac{1}{n}-\frac{1}{n+2}+\frac{1}{n+1}-\frac{1}{n+2}\)
\(=\frac{1}{n}+\frac{1}{n+1}-\frac{2}{n+2}\)
Do đó, ta có: \(\frac{5}{1\cdot2\cdot3}=\frac{3\cdot1+2}{1\cdot2\cdot3}=\frac11+\frac{1}{1+1}-\frac{2}{1+2}=1+\frac12-\frac23\)
\(\frac{8}{2\cdot3\cdot4}=\frac{3\cdot2+2}{2\cdot3\cdot4}=\frac12+\frac13-\frac24\)
...
Do đó, ta có: \(S=1+\frac12-\frac23+\frac12+\frac13-\frac24+\frac13+\frac14-\frac25+\ldots+\frac{1}{n}+\frac{1}{n+1}-\frac{2}{n+2}\)
\(=1+\left(\frac12+\frac12\right)+\left(-\frac23+\frac13+\frac13\right)+\left(-\frac24+\frac14+\frac14\right)+\cdots+\left(-\frac{2}{n}+\frac{1}{n}+\frac{1}{n}\right)-\frac{2}{n+1}+\frac{1}{n+1}-\frac{2}{n+2}\)
\(=1+1-\frac{1}{n+1}-\frac{2}{n+2}<2\)
=>\(S_{2018}<2\)