Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ngọc Hoàng Khương Nguyễn
Xem chi tiết
Nguyễn Hoàng Minh
14 tháng 12 2021 lúc 20:32

\(ĐK:x\ge-1\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x+1}=a\\\sqrt{x^2-x+1}=b\end{matrix}\right.\left(a,b\ge0\right)\)

\(PT\Leftrightarrow b^2-1+2ab=2a\\ \Leftrightarrow2ab-2a+b^2-1=0\\ \Leftrightarrow2a\left(b-1\right)+\left(b-1\right)\left(b+1\right)=0\\ \Leftrightarrow\left(2a+b+1\right)\left(b-1\right)=0\\ \Leftrightarrow b-1=0\left(2a+b+1>0\right)\\ \Leftrightarrow b=1\\ \Leftrightarrow x^2-x+1=1\\ \Leftrightarrow x\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\left(tm\right)\\x=1\left(tm\right)\end{matrix}\right.\)

James Pham
Xem chi tiết
Nguyễn Hoàng Minh
11 tháng 12 2021 lúc 9:24

\(ĐK:x\ge2\\ PT\Leftrightarrow\sqrt{\left(x-1\right)\left(x-2\right)}+3=3\sqrt{x-1}+\sqrt{x-2}\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x-1}=a\\\sqrt{x-2}=b\end{matrix}\right.\left(a,b\ge0\right)\)

\(PT\Leftrightarrow ab+3=3a+b\\ \Leftrightarrow3a-3+b-ab=0\\ \Leftrightarrow3\left(a-1\right)-b\left(a-1\right)=0\\ \Leftrightarrow\left(3-b\right)\left(a-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}a=1\Rightarrow x-1=1\Rightarrow x=2\left(tm\right)\\b=3\Rightarrow x-2=9\Rightarrow x=11\left(tm\right)\end{matrix}\right.\)

Vậy \(x\in\left\{2;11\right\}\)

Tâm Cao
Xem chi tiết
Trần Thanh Phương
13 tháng 3 2021 lúc 21:50

ĐKXĐ: \(x\le1\)

+) Xét \(x=0\) thỏa mãn.

+) Xét \(x\ne0\):

Nhân cả 2 vế của phương trình với \(\left(1+\sqrt{1-x}\right)\) ta được:

\(\left(1-\sqrt{1-x}\right)\left(1+\sqrt{1-x}\right)\sqrt[3]{2-x}=x\left(1+\sqrt{1-x}\right)\)

\(\Leftrightarrow x\sqrt[3]{2-x}=x\left(1+\sqrt{1-x}\right)\)

\(\Leftrightarrow\sqrt[3]{2-x}=1+\sqrt{1-x}\)

Đặt \(\sqrt{1-x}=a\left(a\ge0\right)\), khi đó \(2-x=a^2+1\)

\(pt\Leftrightarrow\sqrt[3]{a^2+1}=1+a\)

\(\Leftrightarrow a^2+1=\left(a+1\right)^3=a^3+3a^2+3a+1\)

\(\Leftrightarrow a^3+2a^2+3a=0\)

\(\Leftrightarrow a\left(a^2+2a+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=0\left(C\right)\\\left(a+1\right)^2+2=0\left(L\right)\end{matrix}\right.\)

\(\Leftrightarrow\sqrt{1-x}=0\)

\(\Leftrightarrow x=1\) ( thỏa mãn )

Vậy tập nghiệm của phương trình là \(x=\left\{0;1\right\}\)

Trần Thanh Phương
13 tháng 3 2021 lúc 22:10

Lại bị lỗi công thức :((

Nhân cả hai vế của phương trình với \(1+\sqrt{1-x}\) ta được:

\(\left(1-\sqrt{1-x}\right)\left(1+\sqrt{1-x}\right)\sqrt[3]{2-x}=x\left(1+\sqrt{1-x}\right)\)

\(\Leftrightarrow x\sqrt[3]{2-x}=x\left(1+\sqrt{1-x}\right)\)

\(\Leftrightarrow\sqrt[3]{2-x}=1+\sqrt{1-x}\)

Nguyễn Thanh Bình
Xem chi tiết
Trần Ái Linh
1 tháng 3 2023 lúc 21:40

ĐKXĐ: `x-1 >0 <=>x>1`

`(x^2-4x+3)/(sqrt(x-1))=sqrt(x-1)`

`<=>x^2-4x+3=x-1`

`<=>x^2-5x+4=0`

`<=>x^2-x-4x+4=0`

`<=>x(x-1)-4(x-1)=0`

`<=>(x-4)(x-1)=0`

`<=> [(x=4\ (TM)),(x=1\ (KTM)):}`

``

Vậy `S={4}`.

Nguyễn Phương Chi
Xem chi tiết
HT.Phong (9A5)
5 tháng 9 2023 lúc 18:24

1) \(\sqrt{x^2+1}=\sqrt{5}\)

\(\Leftrightarrow x^2+1=5\)

\(\Leftrightarrow x^2=5-1\)

\(\Leftrightarrow x^2=4\)

\(\Leftrightarrow x^2=2^2\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)

2) \(\sqrt{2x-1}=\sqrt{3}\) (ĐK: \(x\ge\dfrac{1}{2}\)

\(\Leftrightarrow2x-1=3\)

\(\Leftrightarrow2x=3+1\)

\(\Leftrightarrow2x=4\)

\(\Leftrightarrow x=\dfrac{4}{2}\)

\(\Leftrightarrow x=2\left(tm\right)\)

3) \(\sqrt{43-x}=x-1\) (ĐK: \(x\le43\))

\(\Leftrightarrow43-x=\left(x-1\right)^2\)

\(\Leftrightarrow x^2-2x+1=43-x\)

\(\Leftrightarrow x^2-x-42=0\)

\(\Leftrightarrow\left(x-7\right)\left(x+6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=7\left(tm\right)\\x=-6\left(tm\right)\end{matrix}\right.\)

4) \(x-\sqrt{4x-3}=2\) (ĐK: \(x\ge\dfrac{3}{4}\))

\(\Leftrightarrow\sqrt{4x-3}=x-2\)

\(\Leftrightarrow4x-3=\left(x-2\right)^2\)

\(\Leftrightarrow x^2-4x+4=4x-3\)

\(\Leftrightarrow x^2-8x+7=0\)

\(\Leftrightarrow\left(x-7\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=7\left(tm\right)\\x=1\left(tm\right)\end{matrix}\right.\)

5) \(\dfrac{\sqrt{x}+1}{\sqrt{x}+3}=\dfrac{1}{2}\) (ĐK: \(x\ge0\))

\(\Leftrightarrow\sqrt{x}+3=2\sqrt{x}+2\)

\(\Leftrightarrow2\sqrt{x}-\sqrt{x}=3-2\)

\(\Leftrightarrow\sqrt{x}=1\)

\(\Leftrightarrow x=1^2\)

\(\Leftrightarrow x=1\left(tm\right)\)

Gia Huy
5 tháng 9 2023 lúc 18:24

1)

\(\sqrt{x^2+1}=\sqrt{5}\\ \Leftrightarrow x^2+1=5\\ \Leftrightarrow x^2=5-1=4\\ \Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)

Vậy PT có nghiệm `x=2` hoặc `x=-2`

2)

ĐKXĐ: \(x\ge\dfrac{1}{2}\)

\(\sqrt{2x-1}=\sqrt{3}\\ \Leftrightarrow2x-1=3\\ \Leftrightarrow2x=4\\ \Leftrightarrow x=2\left(tm\right)\)

Vậy PT có nghiệm `x=2`

3)

\(ĐKXĐ:x\le43\)

PT trở thành:

\(43-x=\left(x-1\right)^2=x^2-2x+1\\ \Leftrightarrow43-x-x^2+2x-1=0\\ \Leftrightarrow-x^2+x+42=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-6\left(tm\right)\\x=7\left(tm\right)\end{matrix}\right.\)

Vậy PT có nghiệm `x=-6` hoặc `x=7`

4)

ĐKXĐ: \(x\ge\dfrac{3}{4}\)

PT trở thành:

\(\sqrt{4x-3}=x-2\\ \Leftrightarrow4x-3=\left(x-2\right)^2=x^2-4x+4\\ \Leftrightarrow4x-3-x^2+4x-4=0\\ \Leftrightarrow-x^2+8x-7=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\left(tm\right)\\x=7\left(tm\right)\end{matrix}\right.\)

Vậy PT có nghiệm \(x=1\) hoặc \(x=7\)

5) 

ĐKXĐ: \(x\ge0\)

PT trở thành:

\(\sqrt{x+3}=2\sqrt{x}+2\\ \Leftrightarrow x+3=\left(2\sqrt{x}+2\right)^2=4x+8\sqrt{x}+4\\ \Leftrightarrow x+3-4x-8\sqrt{x}-4=0\\ \Leftrightarrow-3x-8\sqrt{x}-1=0\left(1\right)\)

Đặt \(\sqrt{x}=t\left(t\ge0\right)\)

Khi đó:

(1)\(\Leftrightarrow3t^2+8t+1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=\dfrac{-4+\sqrt{13}}{3}\left(loại\right)\\t=\dfrac{-4-\sqrt{13}}{3}\left(loại\right)\end{matrix}\right.\)

Vậy PT vô nghiệm.

Akai Haruma
5 tháng 9 2023 lúc 18:22

Bài 1:

$\sqrt{x^2+1}=\sqrt{5}$

$\Leftrightarrow x^2+1=5$

$\Leftrightarrow x^2-4=0$

$\Leftrightarrow (x-2)(x+2)=0$

$\Leftrightarrow x-2=0$ hoặc $x+2=0$

$\Leftrightarrow x=\pm 2$ (đều tm)

2. ĐKXĐ: $x\geq \frac{1}{2}$

PT $\Leftrightarrow 2x-1=3$

$\Leftrightarrow 2x=4$

$\Leftrightarrow x=2$ (tm) 

3. ĐKXĐ: $x\leq 43$

PT \(\Rightarrow \left\{\begin{matrix} x-1\geq 0\\ 43-x=(x-1)^2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 1\\ x^2-x-42=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 1\\ (x+6)(x-7)=0\end{matrix}\right.\)

$\Rightarrow x=7$ (tm) 

 

Nguyễn Khánh Nhi
Xem chi tiết
Nguyễn Hoàng Minh
15 tháng 9 2021 lúc 14:16

\(1,\sqrt{x+2+4\sqrt{x-2}}=5\left(x\ge2\right)\\ \Leftrightarrow\sqrt{\left(\sqrt{x-2}+4\right)^2}=5\\ \Leftrightarrow\sqrt{x-2}+4=5\\ \Leftrightarrow\sqrt{x-2}=1\\ \Leftrightarrow x-2=1\Leftrightarrow x=3\\ 2,\sqrt{x+3+4\sqrt{x-1}}=2\left(x\ge1\right)\\ \Leftrightarrow\sqrt{\left(\sqrt{x-1}+4\right)^2}=2\\ \Leftrightarrow\sqrt{x-1}+4=2\\ \Leftrightarrow\sqrt{x-1}=-2\\ \Leftrightarrow x\in\varnothing\left(\sqrt{x-1}\ge0\right)\)

\(3,\sqrt{x+\sqrt{2x-1}}=\sqrt{2}\left(x\ge\dfrac{1}{2};x\ne1\right)\\ \Leftrightarrow x+\sqrt{2x-1}=2\\ \Leftrightarrow x-2=-\sqrt{2x-1}\\ \Leftrightarrow x^2-4x+4=2x-1\\ \Leftrightarrow x^2-6x+5=0\\ \Leftrightarrow\left(x-5\right)\left(x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=5\left(tm\right)\\x=1\left(loại\right)\end{matrix}\right.\)

\(4,\sqrt{x-2+\sqrt{2x-5}}=3\sqrt{2}\left(x\ge\dfrac{5}{2}\right)\\ \Leftrightarrow\sqrt{2x-4+2\sqrt{2x-5}}=6\\ \Leftrightarrow\sqrt{\left(\sqrt{2x-5}+1\right)^2}=6\\ \Leftrightarrow\sqrt{2x-5}+1=6\\ \Leftrightarrow\sqrt{2x-5}=5\\ \Leftrightarrow2x-5=25\Leftrightarrow x=15\left(TM\right)\)

Nguyễn Huỳnh Bá Lộc
Xem chi tiết

\(2\sqrt{1-x}-\sqrt{x+1}+3\sqrt{1-x^2}=3-x\)

\(2\sqrt{1-x}-\sqrt{1+x}+2\sqrt{\left(1-x\right)\left(1+x\right)}+\sqrt{\left(1-x\right)\left(1+x\right)}=3-x\)

\(2\sqrt{1-x}\left(1-\sqrt{1+x}\right)-\sqrt{1+x}\left(1-\sqrt{1-x}\right)=3-x\)

Khách vãng lai đã xóa
Thiên Thương Lãnh Chu
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
7 tháng 3 2021 lúc 15:50

Do có quá ít câu hỏi nên bạn nào trả lời được, mình sẽ xóa khỏi mục "Câu hỏi hay" nhé!

Trúc Đỗ Thuỷ
Xem chi tiết