Tìm x
a) 2x - 1 = ( 2x - 1 ) ^2
Tìm x
a)(2x+1)(x-2)-2x²=0
b)(x+3)(2x-1)+x²=9
a) \(\left(2x+1\right)\left(x-2\right)-2x^2=0\)
\(\Leftrightarrow2x^2-4x+x-2-2x^2=0\)
\(\Leftrightarrow\left(2x^2-2x^2\right)-\left(4x-x\right)-2=0\)
\(\Leftrightarrow-3x-2=0\)
\(\Leftrightarrow-3x=2\)
\(\Leftrightarrow x=-\dfrac{2}{3}\)
b) \(\left(x+3\right)\left(2x-1\right)+x^2=9\)
\(\Leftrightarrow\left(x+3\right)\left(2x-1\right)+x^2-9=0\)
\(\Leftrightarrow\left(x+3\right)\left(2x-1\right)+\left(x+3\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(2x-1+x-3\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(3x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\3x=4\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=\dfrac{4}{3}\end{matrix}\right.\)
`#3107.101107`
a)
`(2x + 1)(x - 2) - 2x^2 = 0`
`<=> 2x^2 - 3x - 2 - 2x^2 = 0`
`<=> -3x - 2 = 0`
`<=> -3x = 2`
`<=> x = -2/3`
Vậy, `x=-2/3`
b)
`(x + 3)(2x - 1) + x^2 = 9`
`<=> 2x^2 - 5x - 3 + x^2 = 9`
`<=> 3x^2 - 5x - 3 = 9`
`<=> 3x^2 - 3x - 12 = 0`
`<=> 3x^2 + 4x - 9x - 12 = 0`
`<=> (3x^2 - 9x) + (4x - 12) = 0`
`<=> 3x(x - 3) + 4(x - 3) = 0`
`<=> (3x + 4)(x - 3) = 0`
`<=>` TH1: `3x + 4 = 0`
`<=> 3x = -4`
`<=> x = -4/3`
TH2: `x - 3 = 0`
`<=> x = 3`
Vậy,` x \in {-4/3; 3}.`
Tìm x
a)x.(5-2x)-2x.(1-x)=15
b)(3x+2)2+(1+3x).(1-3x)=2
a) \(x\left(5-2x\right)-2x\left(1-x\right)=15\\ \Leftrightarrow5x-2x^2-2x+2x^2=15\\ \Leftrightarrow3x=15\\ \Leftrightarrow x=5\)
Vậy x = 5 là nghiệm của pt.
b) \(\left(3x+2\right)^2+\left(1+3x\right)\left(1-3x\right)=2\\ \Leftrightarrow\left(9x^2+12x+4\right)+1-9x^2=2\\ \Leftrightarrow12x+5=2\\ \Leftrightarrow12x=-3\\ \Leftrightarrow x=\dfrac{-1}{4}\)
Vậy \(x=-\dfrac{1}{4}\) là nghiệm của pt.
a)x.(5-2x)-2x.(1-x)=15
x [ 5 - 2x -2.(1-x) ] = 15
x ( 5 - 2x -2 + 2x ) =15
x . 3 =15
x = 5
b)(3x+2)2+(1+3x).(1-3x)=2
9x2+12x+4+1-9x2=2
12x + 5 = 2
12x = -3
x = -1/4
tìm x
a, (2x - 3)\(^2\) = |3 - 2x|
b, (x - 1)\(^2\) + (2x - 1)\(^2\) - 0
c, x - 2\(\sqrt{x}\) = 0
d, (x - 1)\(^2\) + 1/7 = 0
a: \(\left(2x-3\right)^2=\left|3-2x\right|\)
=>\(\left\{{}\begin{matrix}\left|2x-3\right|>=0\\\left(2x-3\right)^2=\left(2x-3\right)\end{matrix}\right.\Leftrightarrow\left(2x-3\right)^2-\left(2x-3\right)=0\)
=>\(\left(2x-3\right)\left(2x-3-1\right)=0\)
=>\(\left(2x-3\right)\left(2x-4\right)=0\)
=>\(\left[{}\begin{matrix}2x-3=0\\2x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=2\end{matrix}\right.\)
b: \(\left(x-1\right)^2+\left(2x-1\right)^2=0\)
=>\(x^2-2x+1+4x^2-4x+1=0\)
=>\(5x^2-6x+2=0\)
\(\Delta=\left(-6\right)^2-4\cdot5\cdot2=36-20\cdot2=-4< 0\)
=>Phương trình vô nghiệm
c: ĐKXĐ: x>=0
\(x-2\sqrt{x}=0\)
=>\(\sqrt{x}\cdot\sqrt{x}-2\cdot\sqrt{x}=0\)
=>\(\sqrt{x}\left(\sqrt{x}-2\right)=0\)
=>\(\left[{}\begin{matrix}\sqrt{x}=0\\\sqrt{x}-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(nhận\right)\\x=4\left(nhận\right)\end{matrix}\right.\)
d: \(\left(x-1\right)^2+\dfrac{1}{7}=0\)
mà \(\left(x-1\right)^2+\dfrac{1}{7}>=\dfrac{1}{7}>0\forall x\)
nên \(x\in\varnothing\)
1. Tìm x
a. 2.(4-3x)+2x=5(2x-3)
b. \(\dfrac{1}{2}-\left(2x-\dfrac{1}{3}\right)^2=\dfrac{7}{18}\)
a: ta có: \(2\left(4-3x\right)+2x=5\left(2x-3\right)\)
\(\Leftrightarrow8-6x+2x-10x+15=0\)
\(\Leftrightarrow-14x=-23\)
hay \(x=\dfrac{23}{14}\)
b: Ta có: \(\dfrac{1}{2}-\left(2x-\dfrac{1}{3}\right)^2=\dfrac{7}{18}\)
\(\Leftrightarrow\left(2x-\dfrac{1}{3}\right)^2=\dfrac{1}{9}\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-\dfrac{1}{3}=\dfrac{1}{3}\\2x-\dfrac{1}{3}=-\dfrac{1}{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=\dfrac{2}{3}\\2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=0\end{matrix}\right.\)
Tìm x
a. 4(x-3)^2-(2x-1)(2x+1)=10
b. x^3-25x=0
\(a,\Leftrightarrow4x^2-24x+36-4x^2+1=10\\ \Leftrightarrow-24x=-27\Leftrightarrow x=\dfrac{9}{8}\\ b,\Leftrightarrow x\left(x^2-25\right)=0\\ \Leftrightarrow x\left(x-5\right)\left(x+5\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=5\\x=-5\end{matrix}\right.\)
\(a,4.\left(x-3\right)^2-\left(2x-1\right)\left(2x+1\right)=10\)
\(\Leftrightarrow4.\left(x^2-6x+9\right)-\left(2x^2\right)-1^2=10\)
\(\Leftrightarrow4x^2-24x+36-4x^2+1=10\)
\(\Leftrightarrow-24x+27=10\)
\(\Leftrightarrow-24x=-27\)
\(\Leftrightarrow x=\dfrac{27}{24}\)
Vậy \(x=\dfrac{27}{24}\)
\(b,x^3-25x=0\)
\(\Leftrightarrow x\left(x^2-25\right)=0\)
\(\Leftrightarrow x\left(x-5\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x-5=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=5\\x=-5\end{matrix}\right.\)
Vậy \(x\in\left\{0;\pm5\right\}\)
Tìm x
a) -3 1/2 : (4/5-1/2x) = 2^2
b) 2x + 3x = 5
c) -2/3x - 1/3x = -2
d) -2/3 (x+1) - 1/2 = -1/3
a: =>-7/2:(4/5-1/2x)=4
=>4/5-1/2x=-7/2:4=-7/8
=>1/2x=4/5+7/8=67/40
=>x=67/20
b: =>5x=5
=>x=1
c: =>x(-2/3-1/3)=-2
=>-x=-2
=>x=2
d: =>-2/3(x+1)=-1/3+1/2=1/6
=>x+1=-1/6:2/3=-1/6*3/2=-3/12=-1/4
=>x=-1/4-1=-5/4
tìm x
a) (x+2)(x+3)-(x-2)(x+5)=6
b) (3x+2)(2x+9)-(x+2)(6x+1)=(x+1)-(x-6)
c) 3(2x-1)(3x-1)-(2x-3)(9x-1)=0
a: Ta có: \(\left(x+2\right)\left(x+3\right)-\left(x-2\right)\left(x+5\right)=6\)
\(\Leftrightarrow x^2+5x+6-x^2-3x+10=6\)
\(\Leftrightarrow2x=-10\)
hay x=-5
b: Ta có: \(\left(3x+2\right)\left(2x+9\right)-\left(x+2\right)\left(6x+1\right)=\left(x+1\right)-\left(x-6\right)\)
\(\Leftrightarrow6x^2+27x+4x+18-6x^2-x-12x-2=x+1-x+6\)
\(\Leftrightarrow18x+16=7\)
hay \(x=-\dfrac{1}{2}\)
c: Ta có: \(3\left(2x-1\right)\left(3x-1\right)-\left(2x-3\right)\left(9x-1\right)=0\)
\(\Leftrightarrow3\left(6x^2-2x-3x+1\right)-\left(18x^2-2x-27x+3\right)=0\)
\(\Leftrightarrow18x^2-15x+3-18x^2+27x-3=0\)
hay x=0
TÌM X
a. 3.(x^2-x+2)-x.(2+3x)=0
b. (x-1)^2 + (x-1)(x+2)=0
c. 2x^3 +3x^2+2x+3=0
d. 2x^2+x=6
\(a,\Rightarrow3x^2-3x+6-2x-3x^2=0\\ \Rightarrow-5x=-6\Rightarrow x=\dfrac{6}{5}\\ b,\Rightarrow\left(x-1\right)\left(x-1+x+2\right)=0\\ \Rightarrow\left(x-2\right)\left(2x+1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=2\\x=-\dfrac{1}{2}\end{matrix}\right.\\ c,\Rightarrow x^2\left(2x+3\right)+\left(2x+3\right)=0\\ \Rightarrow\left(x^2+1\right)\left(2x+3\right)=0\Rightarrow\left[{}\begin{matrix}x^2=-1\left(vô.lí\right)\\2x+3=0\end{matrix}\right.\\ \Rightarrow x=-\dfrac{3}{2}\\ d,\Rightarrow2x^2+x-6=0\\ \Rightarrow2x^2+4x-3x-6=0\\ \Rightarrow2x\left(x+2\right)-3\left(x+2\right)=0\\ \Rightarrow\left(2x-3\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-2\end{matrix}\right.\)
7, Tìm x
a) \(\dfrac{1}{4}-\left|x+\dfrac{1}{2}\right|=\dfrac{1}{8}\) b) |2x-5|=x+3
c) |2x+1|-2x=6 d) |x-5|+x=5
a) Ta có: \(\dfrac{1}{4}-\left|x+\dfrac{1}{2}\right|=\dfrac{1}{8}\)
\(\Leftrightarrow\left|x+\dfrac{1}{2}\right|=\dfrac{1}{8}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{2}=\dfrac{1}{8}\\x+\dfrac{1}{2}=-\dfrac{1}{8}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-3}{8}\\x=\dfrac{-5}{8}\end{matrix}\right.\)
b) Ta có: \(\left|2x-5\right|=x+3\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-5=x+3\left(x\ge\dfrac{5}{2}\right)\\2x-5=-x-3\left(x< \dfrac{5}{2}\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x-x=3+5\\2x+x=-3+5\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=8\left(nhận\right)\\x=\dfrac{2}{3}\left(nhận\right)\end{matrix}\right.\)
Tìm x
a) 3x(4x - 3) - 2x(5 - 6x) = 0
b) 5(2x - 3) + 4x(x - 2) + 2x(3 - 2x) = 0
c) 3x(2 - x) + 2x(x - 1) = 5x(x + 3)
d) 3x (x + 1) - 5x(3 - x) + 6(x^2 + 2x + 3) = 0
a) 3x(4x-3)-2x(5-6x)=0
\(\Leftrightarrow12x^2-9x-10x+12x^2=0\)
\(\Leftrightarrow24x^2-19x=0\)
\(\Leftrightarrow x\left(24x-19\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\24x-19=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\24x=19\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{19}{24}\end{matrix}\right.\)
Vậy x=0 hoặc x=\(\dfrac{19}{24}\)
b) 5(2x-3)+4x(x-2)+2x(3-2x)=0
\(\Leftrightarrow\)10x-15+4x2-8x+6x-4x2=0
\(\Leftrightarrow8x-15=0\)
\(\Leftrightarrow8x=15\)
\(\Leftrightarrow x=\dfrac{15}{8}\)
vậy x=\(\dfrac{15}{8}\)
c)3x(2-x)+2x(x-1)=5x(x+3)
\(\Leftrightarrow6x-3x^2+2x^2-2x=5x^2+15x\\ \Leftrightarrow4x-x^2=5x^2+15x\\ \Leftrightarrow4x-x^2-5x^2-15x=0\\ \)
\(\Leftrightarrow-6x^2-11x=0\\ \Leftrightarrow-x\left(6x+11\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}-x=0\\6x+11=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\6x=-11\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{-11}{6}\end{matrix}\right.\)
Vậy x=0 hoặc x=\(\dfrac{-11}{6}\)