a) Ta có: \(\dfrac{1}{4}-\left|x+\dfrac{1}{2}\right|=\dfrac{1}{8}\)
\(\Leftrightarrow\left|x+\dfrac{1}{2}\right|=\dfrac{1}{8}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{2}=\dfrac{1}{8}\\x+\dfrac{1}{2}=-\dfrac{1}{8}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-3}{8}\\x=\dfrac{-5}{8}\end{matrix}\right.\)
b) Ta có: \(\left|2x-5\right|=x+3\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-5=x+3\left(x\ge\dfrac{5}{2}\right)\\2x-5=-x-3\left(x< \dfrac{5}{2}\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x-x=3+5\\2x+x=-3+5\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=8\left(nhận\right)\\x=\dfrac{2}{3}\left(nhận\right)\end{matrix}\right.\)
c) Ta có: \(\left|2x+1\right|-2x=6\)
\(\Leftrightarrow\left|2x+1\right|=2x+6\)
\(\Leftrightarrow-2x-1=2x+6\left(x< -\dfrac{1}{2}\right)\)
\(\Leftrightarrow-2x-2x=6+1\)
\(\Leftrightarrow-4x=7\)
hay \(x=-\dfrac{7}{4}\left(nhận\right)\)
d) Ta có: \(\left|x-5\right|+x=5\)
\(\Leftrightarrow\left|x-5\right|=5-x\)
\(\Leftrightarrow x-5\le0\)
hay \(x\le5\)