Cho x, y > 0. Tìm min A = \(\dfrac{x^2+12}{x+y}+y\)
Cho x,y,z>0 và x+y+z=1 . Tìm MinP = ∑ \(\dfrac{1}{x+y+1}\)
Cho x,y,z>0 và x+y+z =1 . Tìm Min A = ∑ \(\dfrac{x}{y^2+x^2+1}\)
\(P=\sum\dfrac{1}{x+y+1}\ge\dfrac{9}{2\left(x+y+z\right)+3}=\dfrac{9}{2.1+3}=\dfrac{9}{5}\)
Dấu \("="\Leftrightarrow x=y=z=\dfrac{1}{3}\)
Cho a, y, z > 0 và x+y+z = 2 . Tìm MIN của :
A= \(\dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}\)
Áp dụng BĐT Svácxơ, ta có:
\(A=\dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}\ge\dfrac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\dfrac{x+y+z}{2}=\dfrac{2}{2}=1\)
\(MinA=1\Leftrightarrow x=y=z=\dfrac{2}{3}\)
cho x,y>0 thỏa mãn: x+y=1
tìm Min \(A=\dfrac{1}{x^2+y^2}+\dfrac{1}{xy}\)
Áp dụng BĐT Cauchy-Schwarz dạng Engel có:
\(A=\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}+\dfrac{1}{2xy}\ge\dfrac{4}{x^2+y^2+2xy}+\dfrac{1}{\dfrac{\left(x+y\right)^2}{2}}=\dfrac{4}{\left(x+y\right)^2}+\dfrac{2}{\left(x+y\right)^2}=6\)
Dấu "=" xảy ra khi x=y=\(\dfrac{1}{2}\)
áp dụng BDT AM-GM
\(=>x+y\ge2\sqrt{xy}=>1\ge2\sqrt{xy}=>\sqrt{xy}\le\dfrac{1}{2}=>xy\le\dfrac{1}{4}\)
\(A=\dfrac{1}{x^2+y^2}+\dfrac{1}{xy}=\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}+\dfrac{1}{2xy}\)
\(\ge\dfrac{4}{x^2+2xy+y^2}+\dfrac{1}{2.\dfrac{1}{4}}=\dfrac{4}{\left(x+y\right)^2}+2=4+2=6\)
dấu"=" xảy ra \(< =>x=y=\dfrac{1}{2}\)
Cho x > y > 0 và xy=1. Tìm MIN của A= \(\dfrac{x^2+y^2}{x-y}\)
\(A=\dfrac{\left(x-y\right)^2+2xy}{x-y}=x-y+\dfrac{2xy}{x-y}=x-y+\dfrac{2}{x-y}>=2\sqrt{2}\)
Dấu = xảy ra khi \(\left\{{}\begin{matrix}x=\dfrac{\sqrt{6}+\sqrt{2}}{2}\\y=\dfrac{\sqrt{6}-\sqrt{2}}{2}\end{matrix}\right.\)
cho \(x,y>0;\dfrac{1}{x}+\dfrac{2}{y}=1\). tìm min P=x+y
\(1=\dfrac{1}{x}+\dfrac{2}{y}\ge\dfrac{\left(1+\sqrt{2}\right)^2}{x+y}=\dfrac{3+2\sqrt{2}}{x+y}\)
\(\Rightarrow x+y\ge3+2\sqrt{2}\)
Dấu "=" xảy ra khi \(\left(x;y\right)=\left(1+\sqrt{2};2+\sqrt{2}\right)\)
Cho x,y,z>0 và \(x+y+z\le\dfrac{3}{4}\). Tìm Min A = \(\Sigma\dfrac{x^3}{\sqrt{y^2+3}}\)
Cho x,y,z> 0 và xy+yz+xz = 3xyz . Tìm MaxP = \(\Sigma\dfrac{yz}{x^3\left(z+2y\right)}\)
cho x;y>0, tìm\(_{Min}P=\dfrac{\left(x+y\right)^2}{x^2+y^2}+\dfrac{\left(x+y\right)^2}{xy}\)
\(S=\dfrac{x^2+y^2+2xy}{x^2+y^2}+\dfrac{x^2+y^2+2xy}{xy}\)
\(=1+\dfrac{2xy}{x^2+y^2}+2+\dfrac{x^2+y^2}{xy}\)
\(=3+\dfrac{2xy}{x^2+y^2}+\dfrac{x^2+y^2}{2xy}+\dfrac{x^2+y^2}{2xy}\)
\(\dfrac{2xy}{x^2+y^2}+\dfrac{x^2+y^2}{2xy}>=2\cdot\sqrt{\dfrac{2xy}{x^2+y^2}\cdot\dfrac{x^2+y^2}{2xy}}=2\)
Dấu = xảy ra khi \(\dfrac{x^2+y^2}{2xy}=\dfrac{2xy}{x^2+y^2}\)
=>x=y
x^2+y^2>=2xy
=>\(\dfrac{x^2+y^2}{2xy}>=1\)
Dấu = xảy ra khi x=y
=>S>=6
Dấu = xảy ra khi x=y
cho x2+y2+z2=3,x,y,z>0 tìm min A=\(\dfrac{1}{x+2}\)+\(\dfrac{1}{y+2}\)+\(\dfrac{1}{z+2}\)
Lời giải:
Áp dụng BĐT Cauchy-Schwarz:
$A\geq \frac{9}{x+2+y+2+z+2}=\frac{9}{x+y+z+6}$
Áp dụng BĐT Bunhiacopxky:
$(x^2+y^2+z^2)(1+1+1)\geq (x+y+z)^2$
$\Rightarrow 9\geq (x+y+z)^2\Rightarrow x+y+z\leq 3$
$\Rightarrow A\geq \frac{9}{x+y+z+6}\geq \frac{9}{3+6}=1$
Vậy $A_{\min}=1$. Dấu "=" xảy ra khi $x=y=z=1$
cho 1>x,y>0 tìm min A=\(\dfrac{x^2}{1-x}+\dfrac{y^2}{1-y}+\dfrac{z^2}{1-z}\)
min A=\(\frac{x^2}{1-x}+\frac{y^2}{1-y}+\frac{1}{x+y}+x+y\)